

D7.1

Architecture Design

v 1.10 / 2015-04-10

George Mourikas (HWC), Symeon Papadopoulos (CERTH), Adrian Popescu (CEA),
Timotheros Kastrinogiannis (VELTI), Theodoros Michalareas (VELTI)

This document defines the architecture design of the USEMP software. The architecture is
based on the user scenario role, technical aspects of the implementation and functional
aspects of individual elements provided by deliverables D2.1 and D2.2. Deliverable D2.1 is
based on task T2.1 Use cases analysis and specification and deliverable D2.2 is based on
task T2.2 Requirements analysis.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

1
© Copyright USEMP consortium

Project acronym USEMP

Full title User Empowerment for Enhanced Online Presence
Management

Grant agreement number 611596

Funding scheme Specific Targeted Research Project (STREP)

Work program topic Objective ICT-2013.1.7 Future Internet Research
Experimentation

Project start date 2013-10-01

Project Duration 36 months

Workpackage WP7

Deliverable lead org. HWC

Deliverable type Report

Authors George Mourikas (HWC)
Timotheros Kastrinogiannis (VELTI)
Symeon Papadopoulos (CERTH)
Adrian Popescu (CEA)
Theodoros Michalareas (VELTI)

Reviewers Laurence Claeys (iMinds)
Theodoros Michalareas (Velti)

Version

Status Final

Dissemination level PU: Public

Due date 2014-05-31

Delivery date 2014-07-24

Revision date 2015-04-10

USEMP – FP7 611596 D7.1 Dissemination Level: PU

2
© Copyright USEMP consortium

Version Changes

0.1 Start of doc

0.2 Template for components build up (section 5)

0.3 After teleconference on 7/3/2014 corrections added to this document
rename VALUE DB to PRIVACY DB, Java based code interacting with
HADOOP

0.4 Added explanation to 1.3.1, 1.3.2, (small change in 1.3.3, 1.3.4. and 1.3.5.).

0.5 Added a top-level architecture in Section 4.1.1, 4.1.2, 4.1.3 created a
separate template-file for subsystem specification (‘Subsystem
specifications template.dotx’ utilised when the top-level Technical
architecture is agreed)

0.6 Edited the document based on Timos email

1.0 Additions based on TelCo#2

1.1 Added the changes according to feedback from Telco#3 to Section 1 and 4.
Included feedback from the consortium members on the TelCo “2.1 and 7.1
Alignment” that is included in Section 1

1.2 Included the Top-level Technical architecture (Section 3), divided the work to
achieve the deadline in the comments

1.3 TelCo#5 and #6 agreed table of content included

1.4 From TelCo#7 section 3 big part is added, from v1.3 corrections from
Symeon Papadopoulos are added

1.5 From TelCo#8 and includes contribution from CEA, VELTI and CERTH

1.6 TelCo#9 and #10 Clean-up formatting ready for review

1.7 Integrating reviewers’ corrections

1.8 Rename ‘LIO’ to ‘DataBait’ (Annual review recommendation)

1.9 Following up on the Annual review recommendation

1.10 Final changes and restructuring to review comments.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

1
© Copyright USEMP consortium

Table of Contents

1. Concept Architecture .. 5

1.1. Introduction .. 5

1.2. Concept Overview .. 6

1.3. Social Networks ... 8

1.4. User Interactions .. 9

1.5. Requirements Mapping ...10

2. Component Services ...15

2.1. Client Side Tools ...15

2.2. Backend Services ...17

3. Component Architecture ..21

3.1. Client Side Tools ...21

3.2. Client Side Browser Plugin ..23

3.3. Social Network Integration ..30

3.4. GUI Components ..41

3.5. Backend Services ...50

3.6. Analytic Modules ...53

4. System Architecture, Interfaces and Integration ...61

4.1. System Overview ..61

4.2. USEMP_SYSTEM Integration ...62

4.3. USEMP_TOOLS Integration ...65

4.4. USEMP_SS Integration ...69

4.5. Analytic Modules Integration ...72

4.6. TC_Enhancement_Process Integration ...81

APPENDIX A. Subsystem Specification template ..84

APPENDIX B. Subsystem component specification template ..85

APPENDIX C. Concept Glossary ...86

APPENDIX D. Data Structure for USEMP-TOOL and USEMP_SS communication87

APPENDIX E. Data-access level structure ..91

APPENDIX F. TC Requirements table ..92

USEMP – FP7 611596 D7.1 Dissemination Level: PU

2
© Copyright USEMP consortium

Table of Figures

Figure 1. USEMP Concept Architecture .. 8

Figure 2. DataBait_BROWSER as a Browser Add-on ..24

Figure 3. DataBait_BROWSER as an On Board Proxy ...25

Figure 4. DataBait_BROWSER as an External Proxy ...25

Figure 5. USEMP Client Tools Overall Architecture and API Anchor Points29

Figure 6. DataBait_OSN Architecture Option A: API Requests Enabled at the Web Client ...35

Figure 7. DataBait_OSN Architecture Option B: API Requests Enabled at the Server36

Figure 8. USEMP Client Tools Overall Architecture and API Anchor Points40

Figure 9. Example of Fluid Design ..43

Figure 10 Popular Devices Screen Resolutions and their Popularity with New Devices44

Figure 11 Example of Responsive Design ..44

Figure 12. USEMP Client Tools Overall Architecture and API Anchor Points49

Figure 13. MapReduce Hadoop system ...51

Figure 14. Word Count TC – example diagram...57

Figure 15. USEMP Value Estimate Component High Level Diagram60

Figure 16. USEMP_SYSTEM architecture – TOP-LEVEL ..62

Figure 17. USEMP_TOOLS – subsystem component diagram ...65

Figure 18. USEMP_SS Subsystem –component diagram ..69

Figure 19. Technical Components – subsystem component diagram72

Figure 20. TC_Enhancement_Process – subsystem component diagram81

Figure 21. Data-subject digital trail free-mind ...91

USEMP – FP7 611596 D7.1 Dissemination Level: PU

3
© Copyright USEMP consortium

List of Tables

Table 1 USEMP Tools Functionality Requirements ..11

Table 2 USEMP Tools Technical Requirements ...12

Table 3 USEMP DataBait_BROWSER Technical Solution Competency Matrix26

Table 4. USEMP DataBait_BROWSER Open Source Solution Expected Features Coverage
 ...28

Table 5 Popular OSN Designing Principles ..32

Table 6 DataBait_OSN Designing Principles mapped to Tool’s Goals39

Table 7 DataBait_GUI Features and Goals ..41

Table 8 DataBait_GUI Designing Principles mapped to Tool’s Goals49

Table 9 USEMP_API interface features requirements summary ...52

Table 10 DataBait_AA interface features requirements summary ...53

Table 11: USEMP_SYSTEM Architecture – component priority ...63

Table 12: USEMP_TOOLS component – component specification63

Table 13: USEMP_SS component – component specification ..64

Table 14: USEMP_TOOLS – subsystem component priority ..66

Table 15: DataBait_GUI – component specification ..66

Table 16: DataBait_BROWSER – component specification ..67

Table 17: DataBait_FB – component specification ...68

Table 18: USEMP_SS Subsystem – component priority ...70

Table 19: Identity Manager – component specification ...70

Table 20: Technical Components Subsystem – component specification71

Table 21: TC_Enhancement_Process Subsystem – component specification71

Table 22: Technical Components – subsystem component priority73

Table 23: TC_ETL_Orchestrator – component specification ...74

Table 24: TC01_FaceDetection – component specification ..75

Table 25: TC02_FaceRecognition – component specification ..75

Table 26: TC03_LogoRecognition – component specification ..76

Table 27: TC04_MultimediaSimilarity – component specification ...76

Table 28: TC05_TextSimilarities – component specification ...77

Table 29: TC06_OpinionMining – component specification ..77

Table 30: TC07_ContentLocation – component specification ...78

Table 31: TC08_PAMediaPredictor – component specification ..78

Table 32: TC09_PABehavPredictor – component specification ..79

Table 33: TC10_WordCount – component specification ...79

Table 34: TC11_Tracking&Analysis – component specification ..80

Table 35: TC_Enhancement_Process – subsystem component priority81

Table 36: ETL_Orchestrator – component specification ...82

Table 37: Value_Estimate – component specification ...82

Table 38: PrivacyProfiling_Process – component specification ..83

Table 39: <name> Subsystem – component priority ...84

Table 40: <name> component – component specification ..85

Table 41: User Real-time Personal and Behavioural Browsers Data87

Table 42: Internet Services that Track user’s Data ...88

USEMP – FP7 611596 D7.1 Dissemination Level: PU

4
© Copyright USEMP consortium

Table 43: User Historical and Real-time OSN Data (with FB Graph API Terminology)89

Table 44: User Personal Data for Training USEMP Tool Algorithms90

USEMP – FP7 611596 D7.1 Dissemination Level: PU

5
© Copyright USEMP consortium

1. Concept Architecture

1.1. Introduction
This document defines the architecture and design of the software to meet the

requirements and goals of the USEMP project. It provides also the designs of the methods
for the collection of user data from online social networks and web browsing (via the use of
web browser plugins) which are then provided as feeds to the USEMP platform for the
evaluation of privacy and personal data value scores which are then presented to the end-
users. For the rest of the document and the duration of the project the consortium has
decided to refer to the collection of USEMP developer tools and applications as ‘DataBait’.

The work carried out for the present report in order to design and specify the
‘DataBait’ USEMP set of tools, is based on WP2 and WP6 results and particularly follows the
steps described below:

Pillar I – Requirements Analysis

Step 1 . Studying WP2 Use Case and Corresponding USTs, towards deriving USEMP
Tools functional requirements and corresponding expected features that will facilitate their
efficient realisation.
Step 2 . Defining Concrete Technical Requirements and Expect ed Features , in order to
recognise the required DataBait technology components that will enable them.
Step 3 . Defining USEMP System Data & Information Models, in terms of end users’
personal data that need to be collected and stored by USEMP Tools towards facilitating the
operation of the envisioned USEMP Services (namely, USEMP back-end System Data
Modelling).

Pillar II –Analysis and Designing Principles

Step 4 . Analysing Existing Technology Stacks, for each of DataBait components/plug-ins
and corresponding emerging technical architectures
Step 5. Justifying the Selected Solution, in terms of specifications and requirements
fulfilment, as well as expandability and scalability attributes.

Pillar III – Design & Integration

Step 6 . Designing software components (web applications, br owser plug-ins, backend
services) in terms of architecture components, interfaces, API and technologies that will be
used following a web services based SOA approach (service-oriented architecture)
Step 7 . Specifying Existing Open Source Projects, that can be used and extended as
part of DataBait to implement envisioned features. This would allow us not only to maximize
the efficiency of the project’s development resources, but also to set the basis for an open
source based overall solution.
Step 8 . Integrating Individual software components/plug-ins to an overa ll USEMP
architecture justifying and reassuring their seamless integration

USEMP – FP7 611596 D7.1 Dissemination Level: PU

6
© Copyright USEMP consortium

1.2. Concept Overview
The main function of the system is to offer the Online Social Network(s) User actor

(OSN_USER) a set of tools that provide the functionalities described by the use cases
presented in WP2. Interactions of the OSN_USER include a group of graphical user
interfaces called USEMP_TOOLS, available after installation and registration in the
USEMP_SYSTEM. The USEMP_TOOLS are considered ‘client side tools’ that will interact
(via internet connection) with the USEMP server-side (USEMP_SS) ‘backend services’ part
of the USEMP_SYSTEM. The OSN_USER will not have access to USEMP_SS other than
credentials authentication, sending seamlessly to USEMP_SS the data collected by the
USEMP_TOOLS and the processed result from the USEMP_SS.

The USEMP_SYSTEM is separated between the ‘client side tools’ and the ‘backend
services/processes’. The ‘client side tools’ are three (3) applications with main graphical user
interfaces that the OSN_USER (end-consumer) will interact with. The client side tools
(DataBait-FB, DataBait_BROWSER and DataBait-GUI) are available to users that have
registered with Databait and they protected by a logging-in process. The developed
USEMP_TOOLS serve the followup purposes in USEMP:

• DataBait_OSN is a plug-in made specific for each supported OSN, as a 1st example
Facebook OSN is considered, additional social networks can be supported. The
plugin is configured specifically to be able to access (with the permission of the
OSN_USER) the digital-trail (see mind mapping in APPENDIX E.) generated by the
OSN_USER while interacting with the OSN (for example users
posts/comments/tweets/pokes/share images or similar share personal data). In the
1st realization of the Databait system DataBait_FB is implemented to support
Facebook social network integration.

• DataBait_BROWSER is an application in the form of a web browser plug-in made
specifically to collect the digital-trail of the end-consumer information (see mind
mapping in APPENDIX E.) generated while interacting with the OSN_USER web
browser where the plug-in is installed.

• DataBait-GUI is an application that acts as the graphical user interface through
which the USEMP_SYSTEM can convey to the OSN_USER results of the
USEMP_SYSTEM processes and services (done by utilising the backend services
and processes).

The USEMP_SYSTEM client side tools interface with the backend

services/processes by a set of USEMP custom-made Application Programming Interfaces
(USEMP_API). All the backend processes occur in a cloud environment. The collection of
data temporary stored in the client side will be streamed to the USEMP_SYSTEM backend
services using the USEMP_APIs. A local storage strategy will be employed for the
USEMP_SYSTEM to temporary store and clean after streaming is complete.

The information acquired by DataBait-FB and DataBait_BROWSER will use the
USEMP_APIs to transfer the collected information to be stored in within the
USEMP_SYSTEM backend storage area & database identified as
‘HISTORICAL_DATA_DB’. Before the communication of the acquired information to the
backend can be initiated, a transparent authorisation/authentication of the client credentials
is completed. USEMP_APIs implement the interface between the client side and the
backend of the USEMP_SYSTEM including transparent authorisation and authentication of

USEMP – FP7 611596 D7.1 Dissemination Level: PU

7
© Copyright USEMP consortium

the information credentials step with the ‘Identity Manager’ (USEMP_SYSTEM backend
service).

Access to the USEMP_TOOLS by the OSN_USER requires installation and
registration steps to the USEMP_SYSTEM. In the registration step authorisation and
authentication credentials are created with the unique OSN_USER identity. Authorisation
and Authentication steps in the concept Architecture are implemented by the DataBait_AA
interface. The DataBait_AA is interfaced via the USEMP_API interface with the backend
service “Identity Manager”. The “Identity Manager” is a backend service which
verifies/authorises the in/out-going information-credentials between the client side and the
backend services of the USEMP_SYSTEM.

Information communicated from the USEMP_TOOLS to the backend regarding the
processing elements of Technical Components is the ‘HISTORICAL_DATA_DB’ dataset and
a collection of information from open/public Data-Sources. The type/sources of the
open/public information is dictated by the input-information-structure of each Technical
Component. The Technical Components are a set of processes that analyse aspects of the
‘HISTORICAL_DATA_DB’ against the open/public information datasets. The metadata
produced by the Technical Component (TC_metadata) is provided for additional processing
by the PRIVACY PROFILING and VALUE ESTIMATE processes.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

8
© Copyright USEMP consortium

Figure 1. USEMP Concept Architecture depicting the main software components and information
flows for Databait tools

1.3. Social Networks data integration
One of the basic requirements of the Databait tool as described in deliverable D2.1 is to
provide users with additional information related to their operations in Online Social
Networks related to privacy and personal data value. Additionally the tools developed in
WP6 require access to OSN user personal data. It is therefore essential for the Databait
system to collect such information from OSNs and to make if available for further analysis.
In order to integrate user personal data into Databait a modular an open interface
architecture has been followed.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

9
© Copyright USEMP consortium

Databait architecture allows to develop a OSN-specific application that follows the limitations
and facilities provided by each different OSN that collects personal data associates them
with a Databait user and makes them available through a common format. For the 1st
realization of the Databait system Facebook has been chosen as the primary OSN from
which data will be collated and integrated into the system. While in this document the focus
is on interactions and specifications for Facebook additional OSNs can be added following
the proposed open interface and modular approach. For each additional OSN additional
applications added at a later stage in the project, such as Twitter, or newer social networks
such as Google Plus, Instagram, Vine, provided they can support an open interface for the
collection of user personal data. These can then be developed as DataBait_OSN specific
modules and provide data to HISTORICAL_DATA_DB.
Additionally Databait architecture allows for a 2nd method to collect data from OSNs without
residing to open interfaces from OSNs but to the use of the DataBait_BROWSER plugin.
DataBait_BROWSER plugin is developed as a flexible web browser component that has
access to all the web browsing history of an OSN_USER that uses the web browser (for
example Chrome browser) to access OSN. DataBait_BROWSER plugin is designed to
collect references to multimedia items shared by the OSN_USER and transfer these
references to the Databait backend services so that these are collected if they are publically
available. Additionally DataBait_BROWSER plugin can be easily modified to seek and
collect references to additional public items that are shared through the web browser, for
example comments or posts if this is desirable (for example if it is not possible to use an
OSN open interface to collect such data). Both supported methods for the collection of OSN
data (use of OSNs open interface and use of DataBait_BROWSER) provide a very powerful
framework that allow the Databait tools to integrate any of the popular OSNs that users
utilize over their web browser.

1.4. User Interactions
There are a number of ways in which the user will interact with the system, whether that be
actively or passively. These interactions are with the browser, and via the browser plugin
which provides browsing habits and tracker activity, via the OSN directly, from which an
interface is provided when a user signs up to the system via the DataBait GUI interface, from
which most user activity is expected to take place.

In order DataBait_BROWSER to be used by a USEMP user, the user should:

• Download it from the corresponding browser store that will be published (for example
Chrome Web Store or Mozilla addon) or alternatively download the addon from
Databait web site;

• Install DataBait_BROWSER into their browsers and then sign-in with the USEMP
User account.

In order DataBait_OSN to be used by a USEMP user, the user should:

• Access DataBait_OSN URL via their web/mobile web browsers;
• Login with their corresponding OSN account and approve the required privacy

settings;
• The collected data are forwarded to Databait backend services where number of

privacy/personal value scores are computed. As a benefit/reward Databait_OSN

USEMP – FP7 611596 D7.1 Dissemination Level: PU

10
© Copyright USEMP consortium

USEMP users can experience a visualization of such scores in Databait_GUI and
select certain actions that can be applied with respect to their privacy (an example of
such a system that demonstrates the overall flow similar to the that that will be
developed by USEMP but with different focus/visualizations and scores is available
at: http://www.youarewhatyoulike.org)

In order for DataBait_GUI to be used by a USEMP user, the user should:

• Access DataBait_GUI URL via their web/mobile browsers;
• Login with their corresponding USEMP account credentials;

1.5. Requirements Mapping
This section will map the requirements defined in WP2 to components and modules within
the overall system.

1.5.1. Functionality Requirements Analysis

In this section, an overview of fundamental USEMP tools functionality requirements is
provided (in line with WP2 use cases and USTs), in terms of user-centric features and
functionalities that should be supported by the latter towards a) enabling USEMP services,
b) optimising end-users experience and finally, c) reassuring end-users privacy. Moreover,
the latter are projected to the main three DataBait plug-in towards identifying the key
features supported by each USEMP tool.

The first three features (as presented in Table 1 USEMP Tools Functionality
Requirements) are related to USEMP users’ personal volunteered and behavioural data
collection, in order USEMP envisioned architecture and services to operate. Thus, this is not
applicable for DataBait_GUI but mainly concerns the expected functionality of
DataBait_OSN and DataBait_BROWSER. The only emerging limitation is related to users’
historical data (i.e. personal data created prior to user’s registration in DataBait (USEMP
System)) collection via their browser, due to the existence of limited historical data stored
locally by a the commonly used browser.

The next four features are related to USEMP users’ ability to explicitly control the
operation of DataBait, either in terms of activating/deactivating their overall operation, or in
terms of allowing/forbidding their access to users’ personal data generated or disseminated
via specific domains (or even specific URLs). The only emerging limitations are related to
DataBait_OSN and changes in policy with respect to consumers’ privacy settings, since the
same privacy settings are applied by default to all the pages of an OSN application. OSN
users can either accept all of the privacy rules at once, upon Logging to the OSN (e.g., FB
log in) or deny them. Due to the latter limitation, fine grained do not track policies cannot be
applied in the case of DataBait_OSN. The user can logout from an OSN and thus, forbid the
latter from accessing the created personal data.

Feature eight from Table 1 USEMP Tools Functionality Requirements is related to
DataBait ability to enable users to prevent online tracking services from tracking their
digital/social personal data, while feature nine is related to the support of intuitive and non-
intrusive notifications towards informing USEMP users in real-time on major privacy leaks.
The final feature is related to users’ ability to use USEMP services from multiple
devices/browsers while having a single USEMP account.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

11
© Copyright USEMP consortium

Feature Features Name Feature Description DataBait_ OSN DataBait_BROWSER DataBait_GUI

1
Real Time Data

Collection
User’s personal/behavioural data
should be collected in real-time.

YES YES
Not

Applicable

2
Historical Data

Collection

Users historical (created in the past,
prior registering in DataBait)

personal/behavioural data should be
collected.

YES
Not Feasible
(or Limited)

Not
Applicable

3
Real-time Data
Visualization

Users should be able to visualize the
outcome of USEMP System in real-

time.
Not Applicable Not Applicable YES

4
Terms of Use

(ToU)
Users should be able to clearly
identify and read USEMP ToU.

YES YES YES

5
Plug-in

Deactivation
Users should be able to pause/stop

USEMP plug-in’s operation.
YES YES YES

6
Access Policy
Management

Users should be able to clearly
define domains from which no data

are collected by the USEMP plug-in.
Forbidden domain preferences

should be stored locally in order to
reassure privacy.

Not Applicable YES
Not

Applicable

7
Forbid Plug-in
Operation For
Specific URLs

Users should be able to clearly
define URLs from which no data are

collected by the USEMP plug-in.
Forbidden URLs should be stored

locally in order to reassure privacy).

Not Applicable YES
Not

Applicable

8
Do Not Track

Enable

Enable users to forbid Specific
Online Tracking Services from
tracking their personal data.

Not Feasible YES
Not

Applicable

9
Support
Pop-Up

Notifications

Support Pop-Up Notification towards
informing users on potential personal
data privacy leaks and compromises

YES

YES
(For specific types of
actions e.g., upload

an image).

YES

10
Unique User
Identification

- Users should be able to create their
own USEMP account and uniquely
identified across all user plug-ins.

YES YES YES

Table 1 USEMP Tools Functionality Requirements

1.5.2. Technical Requirements Analysis

In this section, a list of key fundamental USEMP Tools technical requirements is
provided (in line with WP2 use cases and USTs), in terms of cross platforms and devices
compatibility, easiness of use and operation’s efficacy.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

12
© Copyright USEMP consortium

Feature Technical Requirements DataBait_OSN DataBai t_BROWSER DataBait_GUI

1 Web Browser Compatibility
Chrome, Safari,

Firefox
Chrome, Safari (and/or

Firefox)
Chrome, Safari
(and/or Firefox)

2 Mobile Browser Compatibility
Chrome, Safari,

Firefox
NO (Low Priority)

Chrome, Safari
(and/or Firefox)

3 Deployment / Installation
No Installation

Required

Installation is Required
(per browser per

device/pc)

No Installation
Required

4

Tracking/Operation Traffic
Management

(towards QoE maximisation, minimizing
browser overhead)

YES YES Not Applicable

5
Avoid Denial of Service from the

target 3rd Party OSN Service (e.g. FB)
YES Not Applicable Not Applicable

Table 2 USEMP Tools Technical Requirements

The first two requirements are related to DataBait’s compatibility across devices,
browsers and operating systems. Due the plethora of existing options/solutions in all three
categories, emphasis will be placed to the most popular ones. Specifically, regarding OS,
Android and iOS have been selected for mobile devices, while MS Windows and Apple MAC
for desktop. Consequently, browsers compatibility options for the DataBait plug-in/add-ons
and web apps are limited to Chrome, Firefox and Safari (as the most commonly used per
OS1). Finally, given overall project’s effort limitations and in order to properly proof the cross-
platforms feasibility of the proposed solutions DataBait web apps i.e. (DataBait_OSN and
DataBait_GUI) will target on Chrome, Safari and Firefox latest versions both for desktop and
mobile, while DataBait add-ons (DataBait_BROWSER) will manly target Firefox, Chrome
and Safari primarily regarding desktop browsers (mobile add-ons are still within the scope of
the project but as a secondary goal).

The third requirement is related to USEMP users’ easiness in using a DataBait. To
that end, the less required actions for a user to access/use a USEMP tool the more efficient
is for her/him to access and use it. Thus, for DataBait web apps i.e. (DataBait_OSN and
DataBait_GUI) no installation process is required, since the user just uses a URL via her/his
browser to access them, while DataBait add-ons (DataBait_BROWSER) should be installed
by the user in every browser she/he is using (via a simple process2).

The final two requirements aim at reassuring that the use of DataBait’s is not
compromising (decreasing) USEMP users overall QoE from the devices and/or browsers
that the latter operate. Specifically, requirement four is mainly related to the operation of
DataBait’s that track, collect and feed USEMP back-end with end-users
personal/behavioural data. Thus, special attention has been placed on attributing DataBait
with features that minimise the imposed network traffic overhead in order not to affect the
performance of the related devices/browsers. Finally, the fifth requirement is related to the
operation of OSNs and especially, to the limitations that the latter impose in the way and
frequency that OSN users’ data (stored at OSN’s back-end) are accessed via the exposed
OSN API. In simple words, if a DataBait_OSN is accessing a user’s OSN (e.g., FB) personal
data in a ratio greater than the defined API calls ratio threshold, then the OSN (in most

1 http://www.w3schools.com/browsers/browsers_stats.asp
2 http://en.wikipedia.org/wiki/Plug-in_(computing)

USEMP – FP7 611596 D7.1 Dissemination Level: PU

13
© Copyright USEMP consortium

cases) will forbid further access to OSNs API. To avoid the latter, DataBait_OSN should be
attributing with proper throttling mechanisms in order to reassure their efficient operation.

1.5.3. Information Modelling Requirements

Prior concluding this sections, and proceeding with the analysis of each individual
USEMP Tool, i.e., DataBait_BROWSER, DataBait_OSN and DataBait_GUI, in this section
we provide a thorough analysis of USEMP Tools Data and Information Modelling . The
latter model assembles all the information and data types the USEMP System and the
envisioned novel algorithms and sub-components need in order to properly and efficiently
operate. Therefore, since the information required by USEMP System is related mainly to
USEMP end users’ online digital personal and behavioural data, the proficient collection of
the latter consist a fundamental requirement that drives the design and implementation of
DataBait’s, especially DataBait_BROWSER and DataBait_OSN. To that end, the
aggregation of data/information requirements founded on WP2 scenarios and USTs, on
WP6 algorithms data requirements and WP7 USEMP_SS (services and back-end) has been
performed, presented in detail in APPENDIX D.

Overall, more than forty data types have been identified with more than one
hundred distinct data objects consisting of a plural of DataBait’s data model with large
variety. Moreover, a concrete taxonomy of the latter has been performed, based on the
source that a personal data is generated (i.e., web browser, OSN, third party service), since
DataBait must a track and acquire a user’s personal data and the time of creation in order to
properly and in real time inform the user for potential privacy leaks. Thus, the following user
personal data categories have been identified:

• USEMP Users’ Real-time Personal volunteered and Behavioural Browsers Data
o Definition: Personal, volunteered and behavioural data generated and/or

disseminated by the end user via her/his web browser either explicitly (e.g.,
the upload of an image, the post of a news’ post etc.) or implicitly (e.g., the
URL of a page that she/he visited, the time she/he spent in a blog).

o Collector: DataBait_BROWSER
o Data Model Attributes: Name, Data Type (e.g., URL), Metadata (e.g., Event

Time Stamp, Source URL, etc.) and Collection Frequency (On Click, On User
Action, etc.).

o Detail Data Definition: APPENDIX D., Table A.
• Internet Services that Track user’s Data

o Definition: Personal and behavioural data implicitly created by a user via
her/his web browser due to the existence of 3rd party services that monitor
her/his digital trail (e.g., advertising services, analytics services, ad networks,
brands also see mind mapping of the digital trail data-access level structure in
APPENDIX E.).

o Collector: DataBait_BROWSER
o Data Model Attributes: Name (e.g., tracker’s name), Data Type (e.g., URL),

Metadata (e.g., Tracker ID, Tracker Type etc.) and Collection Frequency (On
Click, On User Action, etc.).

o Detail Data Definition: APPENDIX D., Table B.
• User Historical and Real-time OSN Data

o Definition: Personal, volunteered and behavioural data generated and/or
disseminated by the end user via her/his OSN (for example Facebook) either
historical (i.e., data generated by the user prior creating a USEMP user

USEMP – FP7 611596 D7.1 Dissemination Level: PU

14
© Copyright USEMP consortium

account, stored in the OSN system) or real-time (i.e., data generated by the
user upon creating a USEMP account). The latter data will be collected via
OSN’s exposed API.

o Collector: DataBait_OSN
o Data Model Attributes: Name, OSN Object Name, Data Type (e.g., JSON,

URL, etc.), Metadata (e.g., Event Time Stamp, Source URL, etc.) and
Collection Frequency (Periodically, On User Action, etc.).

o Detail Data Definition: APPENDIX D., Table C.
• User Personal Data for Training USEMP System Algorithms

o Definition: USEMP Users volunteered and behavioural data that need to be
collected in order USEMP algorithms to be trained (automated fine tuning)
towards maximising the accuracy of the derived outcomes. These data are a
subset of the ones in the previous three categories, but what differentiates
them is the frequency that they are collected.

o Collector: DataBait_BROWSER and DataBait_OSN
o Detail Data Definition: APPENDIX D. , Table D.

Concluding this sections analysis, let us underline that the presented USEMP Tools
Data Model is a constantly evolving schema based on the need and features added in
USEMP System.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

15
© Copyright USEMP consortium

2. Component Services

2.1. Client Side Tools
USEMP Client-side Architecture components presented in Figure 1, denoted as

USEMP_TOOLS, main objective is to enable USEMP users to directly or indirectly interact
with the overall USEMP System (i.e., USEMP_SS).

Individual USEMP Tools are referred to with the term “DataBait Plug-in(s)” (denoted
as DataBait). The notion “plug-in” is deliberately selected since all DataBait components are
software that add a specific feature to an existing software application (e.g., a web browser),
commonly denoted as plugins, extensions or add-ons3. USEMP Tools (i.e. DataBait(s)) will
serve a two-fold goal.

• Will serve as USEMP users’ graphical interfaces enabling them to access, visualise,
exploit and interact with USEMP services and features via their computers and/or
mobile devices (supporting various device and browser types (e.g., desktop pc,
tablets and mobile devices)

• Will serve as end-users’ personal/behavioural/OSN personal data tracking/collection
mechanisms. The collected data via DataBait will be then provided to USEMP back-
end for further processing and analysis via USEMP_API (application programming
interface4). In order to support USEMP use cases, there are two types of API’s that
will be developed for collecting end-users’ data:

o DataBait_OSN serving as end-users’ Historical & Real-Time OSN Data
Collectors

o DataBait_BROWSER serving as end-users’ Real-Time Behavioural/Personal
Browser Data Collectors

2.1.1. USEMP-TOOLS: DataBait_BROWSER

DataBait_BROWSER is browser plug-in supporting the most popular web browsers
i.e., Chrome, Firefox and Safari, and will serve as users’ digital trail tracker (see mind
mapping in APPENDIX E.) and aggregator, specific to the browser utilised by the data-
subject (USEMP User).

Key Expected Features

• Track USEMP users’ personal and behavioural data generated via their web
browser(s) (either explicitly or implicitly) and feed the latter into USEMP back-end
system via USEMP API, denoted as USEMP_API.

• Identify the USEMP users’ trackers, in terms of 3rd party online tracking and analytics
services, that monitor and collect end-users digital trail (see mind mapping in
APPENDIX E.) on their web browser(s).

• Enable USEMP users to identify their web browser tracker(s) and thus, define fine-
grained do not track (DNT) rules (in a flexible and intuitive manner).

3 http://en.wikipedia.org/wiki/Plug-in_(computing)
4 http://en.wikipedia.org/wiki/Application_programming_interface

USEMP – FP7 611596 D7.1 Dissemination Level: PU

16
© Copyright USEMP consortium

2.1.2. USEMP-TOOLS: DataBait_OSN

DataBait_OSN is an OSN-enabled web/mobile web application (e.g., a Facebook
application), which will function cross-browser and across user’s device. DataBait_OSN will
enable USEMP users to login to the OSN account and thus, provide USEMP System access
to their OSN stored personal data. Specifically, DataBait_OSN:

• Will be developed as an OSN-enabled web application supporting both mobile and
desktop browsers.

• Will efficiently manage the process of obtaining, storing and updating OSN API
generated access tokens for the purpose of retrieving consumer digital train from
OSN.

Key Expected Features

• Track USEMP users’ personal and behavioural data generated and/or disseminated
via the OSN account provider (e.g., Facebook). Such data can be either historical
(i.e., data generated by the user prior creating a USEMP user account, stored in the
OSN system) or real-time (i.e., data generated by the user upon creating a USEMP
account) and should be fed into USEMP back-end system via USEMP API
(USEMP_API). The latter data will be collected via OSN’s exposed APIs (OSN Graph
API interspace5), denoted as OSN_API.

• To enable USEMP users to visually and graphically interact with DataBait_OSN in an
intuitive and Quality of experience (QoE) optimised way

• To support mechanisms that minimise the imposed network traffic overhead (due to
DataBait operation) in order not to affect the performance of the related
devices/browsers.

2.1.3. USEMP-TOOLS: DataBait-GUI

DataBait_GUI will serve as USEMP graphical users’ interface, enabling USEMP
users to access, visualise, exploit and interact with USEMP services and features via their
computers and/or mobile devices. Specifically, DataBait_GUI will be a developed as
web/mobile-wed application, supporting various device and browser types (e.g., desktop pc,
tablet and mobile device browsers) towards reassuring cross-platform, cross-device and
cross-browsers compatibility and rendering optimization

2.1.3.1. Expected Features

DataBait_GUI will enable USEMP users to:
• Manage their USEMP Account for example

o Log-in (via DataBait_AA Server Communication)
o OSN Login (OSN Auth.)
o User Registration
o USEMP Privacy Setting Configuration

• Visualisation of USEMP Services for example:
o User Profile Indicators
o User Privacy Leaks
o User Trackers Identification, filtering and Do Not Track Policies Creations

5 http://en.wikipedia.org/wiki/Social_graph

USEMP – FP7 611596 D7.1 Dissemination Level: PU

17
© Copyright USEMP consortium

o Personal Data Value Insights
o Audience / Influence Management
o USEMP Privacy Notifications (pop-up)
o Compare with OSN friends data

2.2. Backend Services
The USEMP Server Side (USEMP_SS) includes the backend services presented in

Figure 1 (with a polygon shape annotated as USEMP_SS). A short list of the services are
described below:

• Part of the backend services is to interface information between the client-side and
backend

• Part of the backend services is to interface information between open/public Data-
Sources like Wikipedia, logo DB, location DB etc. and the backend

• Part of the backend services is to process the client side information-provided within
the backend system

• Part of the backend services is to cross-checking, Authentication and Authorisation of
credentials collected provided by the USEMP_TOOLS

• Part of the backend services is to provide a USEMP_WORLD_VIEW to the
OSN_USER via client-side USEMP_GUI

2.2.1. USEMP_API (client side and server side commu nication)

The communication of information-streams (bidirectional) between the USEMP
Client-side (USEMP_TOOLS) and the USEMP Server-side (USEMP_SS) are instances of
Application Programming Interfaces (called USEMP_API).

2.2.1.1. Expected Features

Instances of USEMP_API describe the communication interfaces in the
USEMP_SYSTEM explained bellow:

• A USEMP_API instance enables the channel of datasets from PRIVACY_DB (Figure
1 HaP5) to the DataBait_GUI part of the USEMP_TOOLS.

• A USEMP_API instance enables the channel of datasets from DataBait_BROWSER
to the USEMP_SS service ‘HISTORICAL_DATA_DB’ (Figure 1 HaP1).

• A USEMP_API instance is used when information datasets are channelled from
DataBait_OSN to the USEMP_SS service ‘HISTORICAL_DATA_DB’ (Figure 1
HaP1).

• Instances of USEMP_API interfaces are utilised where USEMP_SYSTEM backend
services (like some of the Technical Components) require information from
open/public Data-Sources like Wikipedia, logo/images DB, location DB etc. these
instances of the USEMP_API have direct access to the World Wide Web (Figure 1
HaP2).

2.2.2. USEMP_SS: 'HISTORICAL_DATA_DB'

The HISTORICAL_DATA_DB (Figure 1 HaP0) is a collection of data provided by the
USEMP_TOOLS based on the OSN_USER credential (OSN accounts/profiles). The
HISTORICAL_DATA_DB collected data is not only live-OSN interaction but also complete
historical digital-trail (see mind mapping in APPENDIX E.) available by the OSN provider.
The OSN_USER data (historical/old digital-trail) are collected and stored in order to be
processed further by other USEMP_SS process.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

18
© Copyright USEMP consortium

2.2.3. USEMP_SS: DataBait_AA

The authorisation/authentication of credentials and information communication
between the USEMP_TOOLS and the OSN_USER is necessary and very important to the
system. All instances of authorisation/authentication in USEMP_SYSTEM are signified by
DataBait_AA and assume all DataBait_AA instances interact with the 'Identity Manager'
USEMP_SS service (Figure 1 HaP0).

2.2.3.1. Expected Features

DataBait_AA has multiple instantiations in the USEMP_SYSTEM and are explained
bellow:

• The GUI instance of DataBait_AA exists when the USEMP_SYSTEM is installed and
the OSN_USER creates a USEMP account. In this instance the DataBait_AA creates
the credentials of the OSN_USER and conveys (using a USEMP_API) the
information to the Identity Manager’ (Figure 1 HaP0) backend service in the
USEMP_SS.

• The GUI instance of DataBait_AA that enables the OSN_USER to access to
USEMP_TOOLS. In this instance the Authorisation and Authentication of credentials
(collected by DataBait_AA) utilise a USEMP_API interface to access and cross-
check with the credentials that exist in the backend ‘Identity Manager’ service (Figure
1 HaP0). Once the credentials are cross-checked then access to USEMP_TOOLS by
OSN_USER is approved.

• A transparent instance of DataBait_AA exists when data is acquired from the OSN on
behalf of the OSN_USER to the backend services in the instances of DataBait_FB
communicating with the ‘HISTORICAL_DATA_DB’ (Figure 1 HaP0).

• Additional instances of the DataBait_AA process are utilised when the
DataBait_BROWSER is communicating data via the USEMP_API to the
‘HISTORICAL_DATA_DB’ (Figure 1 HaP0).

• A logging process performed by the OSN_USER using the USEMP credentials is
also associated with the use of the DataBait_AA process for example in order to
access the information on the ‘PRIVACY DB’ (Figure 1 HaP5) with OSN_USER
requires to access and login to the DataBait_GUI.

2.2.4. USEMP_SS: Technical_Components

The collection of close and public data (Figure 1 HaP1 and HaP2) is utilised by the
Technical Components to produce a dataset (Figure 1 HaP3) that will be evaluated by the
Privacy/Profiling and Value Estimate processes. As the Technical components have different
requirements in terms of: processing speed capability, inputs/outputs types of data (images,
text, public-source data etc.), processing iterations of the component with different data-
parameters there is a need for an Extract, Transform, and Load Orchestrator
(ETL_Orchestrator). The ETL_Orchestrator is not present in the concept architecture for
simplicity. In general terms the ETL_Orchestrator manages the Technical Components block
input, output and workflow of data within the Technical Components block (Figure 1 between
HaP2 and HaP3).

2.2.5. USEMP_SS: PRIVACY_DB

PRIVACY_DB is a database of information based on the post-processing content and
metadata from the back-end processing elements. The back-end processing elements of
USEMP_SYSTEM are the Technical Components (section 2.2.4), the ‘Privacy Profiling’

USEMP – FP7 611596 D7.1 Dissemination Level: PU

19
© Copyright USEMP consortium

(section 2.2.6) and ‘Value Estimate’ (section 2.2.7) processes. In addition to the backend
functionality the PRIVACY_DB requires to be accessible to form the USEMP client-side
(USEMP_TOOLS).

2.2.5.1. Expected Features

PRIVACY_DB is shown in Figure 1. USEMP Concept Architecture with the
annotation HaP5 and the features are summarised below:

• Storage of information i.e. read and write privileges from the ‘Privacy Profiling’
(section 2.2.6) and ‘Value Estimate’ (section 2.2.7) processes as suggested by the
arrow from Figure 1 step HaP4 to HaP5.

• Accessibility of the content of PRIVACY_DB from the DataBait_GUI is made by using
the USEMP_API as suggested by the arrow from Figure 1 step HaP5 to the
USEMP_TOOLS DataBait_GUI.

• The accessibility to PRIVACY_DB is web-based, as mentioned in section Erreur !
Source du renvoi introuvable. . PRIVACY_DB includes data that enables
visualisations of DataBait_GUI described in the subsection section 2.1.3.1

2.2.6. USEMP_SS: PRIVACY PROFILING

The Privacy/Profiling process is one of the back-end services tightly coupled with the
account information of OSN_USER (the main actor of USEMP identified in the top of Figure
1).

2.2.6.1. Expected Features

The expected features of this process are described in details in section 3.6.12 (and
the main focus of WP6 D6.1) and summarised below:

• One of the expected features of privacy/profiling process is to detect/advise the
OSN_USER provided information the known but abstract effects of profiling.

o The information datasets are the HISTORICAL_DATA_DB, Technical
components post processing information and repetition on demand of
Technical components processes.

o Advise on the detected profiling-factors through visualisation using the
DataBait_GUI (i.e. after storing them in PRIVACY_DB by this process and
reading the PRIVACY_DB by DataBait_GUI)

2.2.7. USEMP_SS: VALUE ESTIMATE

This process is located in the concept architecture in the same area as the
Privacy/Profiling process because both of these processes have identical input datasets but
different contribution datasets to the PRIVACY_DB (as indicated by the location in Figure 1
HaP4).

2.2.7.1. Expected Features

Value Estimate is a process where the personal data (also used in the
Privacy/Profiling) can be analysed to depict an alternative insight to the Economic value of
the data. Details of this process are available in section 3.6.13 and the implementation
details are included in the task D6.2 of WP6. The expected features are summarised below:

• Access to datasets
o The OSN_USER profile and associated data to the OSN_USER
o HISTORICAL_DATA_DB

USEMP – FP7 611596 D7.1 Dissemination Level: PU

20
© Copyright USEMP consortium

o Technical components post processing information and repetition on demand
of Technical components processes.

• Guidance on the detected Value is visualised using the DataBait_GUI (i.e. after
storing them in PRIVACY_DB by this process and reading the PRIVACY_DB by
DataBait_GUI)

USEMP – FP7 611596 D7.1 Dissemination Level: PU

21
© Copyright USEMP consortium

3. Component Architecture

3.1. Client Side Tools
In this section, USEMP architecture client-side components are presented and

analysed. Emphasis is placed on detailing USEMP Tools technical designing principles
followed towards addressing the project’s envisioned use case requirements, on justifying
the selected technology stacks with respect to current state-of-the-art solutions as well as,
on detailing the overall emerging USEMP client side architecture.

In the following, we refer to USEMP client-side architecture components as USEMP
Tools since their main objective is to enable USEMP users to directly or indirectly interact
with the overall USEMP System (often called DataBait). Therefore, many USEMP Tools’
emerging design challenges are strongly correlated to end users’ quality of experience
(QoE) optimization, since they serve as the interface of USEMP System. Finally, with the
term “DataBait Plug-in(s)” (denoted as DataBait), we refer to one or more of client-side
USEMP Tools. The notion “plug-in” was deliberately selected since all USEMP Tool i.e.,
DataBait’s, are software components that add a specific feature to an existing software
application (e.g., a web browser), commonly denoted as plugins, extensions or add-ons6.

USEMP Tools (DataBait(s)) will serve a twofold goal. On one hand, DataBait’s will
serve as USEMP graphical users’ interface (denoted as DataBait_GUI), enabling them to
access, visualise, exploit and interact with USEMP services and features via their computers
and/or mobile devices. Specifically, DataBait_GUI will be a web/mobile-wed application,
supporting various device and browser types (e.g., desktop pc, tablets and mobile devices)
towards reassuring cross-platform and cross-device compatibility.

On the other hand, DataBait’s will serve as end-users’ personal/behavioural/OSN
personal data tracking/collection mechanisms. The collected data via DataBait’s will be then
provided to USEMP back-end for further processing and analysis via USEMP API
(application programming interface7). In order to support USEMP use cases, there are two
types of DataBait’s that will be developed for collecting end-users’ data:

• DataBait_OSN (e.g., DataBait_FB) serving as end-users’ Historical & Real-Time
OSN Data Collectors (e.g., from Facebook)

DataBait_OSN will be an OSN-enabled web/mobile web application (e.g., a FB
application), which will function cross-browser and across user’s device. DataBait_OSN will
enable end-users to log-in to the OSN (e.g., FB log-in) account and thus, provide USEMP
System access to their OSN Graph API personal data.

• DataBait_BROWSER serving as end-users’ Real-Time Behavioural/Personal
Browser Data Collectors

DataBait_BROWSER will be a browser plug-in (or add-on) and serve as users’
digital trail (see mind mapping in APPENDIX E.) tracker and aggregator, specific to the
browser utilized by the data-subject, towards collecting users’ personal data generated or

6 http://en.wikipedia.org/wiki/Plug-in_(computing)
7 http://en.wikipedia.org/wiki/Application_programming_interface

USEMP – FP7 611596 D7.1 Dissemination Level: PU

22
© Copyright USEMP consortium

distributed via their web browsers. In addition to the above data, the DataBait_BROWSER
will also collect information related to the Internet services that track online users’ browser
behaviour (e.g., online analytics services, ad networks, etc.). The rest of this section is
organised as follows:

First, the methodology followed towards designing and justifying USEMP Tools are
detailed. Then, DataBait plug-ins’ technical, functional and data/information model
requirements are detailed and analysed. Finally, dedicated sections for the three DataBait’s
(DataBait_BROWSER, DataBait_OSN and DataBait_GUI) are provided towards detailing the
followed solutions, justifying the selected technologies with respect to state-of-the-art (SoTA)
and finally, relating DataBait’s to the overall architecture.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

23
© Copyright USEMP consortium

3.2. Client Side Browser Plugin
3.2.1. Architecture Solutions Description and SoTA Analysis

As detailed in the previous section, DataBait_BROWSER key goals are:
• DataBait_B_GoalA: Track USEMP users’ volunteered and behavioural data

generated via their web browser(s) (either explicitly or implicitly) and feed the latter
into USEMP back-end system via USEMP API, denoted as USEMP_API.

• DataBait_B_GoalB: Track USEMP users’ trackers, in terms of 3rd party online
tracking and analytics services, that monitor and collect end-users digital trail on their
web browser(s).

• DataBait_B_GoalC: To enable USEMP users to identify their web browser tracker(s)
and thus, define fine-grained do-not-track (DNT) rules (in a flexible and intuitive
manner) that will be realised and reassured by DataBait_BROWSER.

• DataBait_B_GoalD: To enable USEMP users to control the operation of the tool, in
terms of making them aware of every action performed by DataBait_BROWSER and
how the latter affects their privacy.

• DataBait_B_GoalE: To enable USEMP users to authenticate/authorize via
DataBait_BROWSER in to their USEMP account via DataBait_AA in a common and
transparent way across browsers.

• DataBait_B_GoalF: To enable USEMP users to visually and graphically interact with
DataBait_BROWSER in an intuitive and QoE optimised way for each of the above
goals.
The latter goals reveal the strong correlation of DataBait_BROWSER’s operation with

USEMP end-users’ browser(s). Thus, any potential technical solution should take into
consideration such a peculiarity. To that end, four SoTA technical solutions have been
investigated towards determining DataBait_BROWSER technology.

3.2.1.1. Enabling DataBait_BROWSER as a Browser Add -on

A browser extension, i.e., a browser plug-in or add-on , is a computer program that
extends the functionality of a web browser in some way8. Depending on the browser type,
similar terms such as plug-in or add-on are used. Browser extensions can be created
through the use of web technologies such as HTML, JavaScript, and CSS . Browser
extensions can also improve the user interface of the web browser without directly affecting
viewable content of a web page. This improvement can be achieved through a variety of
add-ons such as toolbars and plug-ins.

Browser extensions (add-ons) popularity and variety across all major browsers has
rapidly increased during the years e.g., Google Chrome 9 Mozilla Firefox10 and Apple
Safari11, due to the browsers-centric enhanced features that they can offer to the end users.
From a technical point of view, there are also multiple methodologies towards creating a
browser add-on, such as:

8 http://en.wikipedia.org/wiki/Browser_extension
9 Chrome Web Store. https://chrome.google.com/webstore/category/extensions?_sort=1
10 Mozilla Firefox Add-ons https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
11 Safari Extensions. http://extensions.apple.com/

USEMP – FP7 611596 D7.1 Dissemination Level: PU

24
© Copyright USEMP consortium

• Add-ons SDK Extensions. The Add-ons SDK (provided for web browser developers
for all the most popular browsers) is a set of simple APIs used to quickly build a
browser extension (e.g., Google Chrome extensions or user-scripts). It abstracts
away most of the XUL / XPCOM infrastructures, giving a more familiar HTML and JS
environment to work with.

• Bootstrapped extensions. Bootstrapped extensions don’t require a restart to be
installed, like SDK extensions, but they don’t have the easy access to SDK APIs or
sandboxing. Every feature and action is performed manually, like tracking windows to
add or remove UI. However, there are various great development tools available
via existing JavaScript Modules.

• Firefox for Android extensions. Extensions in Firefox for Android are slightly
different. Since the UI is native instead of XUL, the way extensions can modify it is
different and a bit more limited. This also means overlay extensions are not
supported, so the potential options are the SDK and bootstrapped extensions.

• Overlay Extensions. Overlay extensions are the old way of making add-ons. It might
still make sense to use this approach if someone needs to create a very complex
overlay or have other specific needs. However, having to restart a browser to install
this kind of extension is annoying because it breaks the user’s workflow.

The following figure provides a high level overview of the creation of DataBait_BROWSER
as a browser add-on.

Figure 2. DataBait_BROWSER as a Browser Add-on

Enabling DataBait_BROWSER as a browser plug-in would require:
• The development and creation of a DataBait_BROWSER for each available popular

browser. Let us underline that existing development frameworks enable the creation
of cross-browser plug-ins.

• The publishing and distribution of the latter via corresponding browser stores (e.g.,
Chrome Store and Firefox Store);

• USEMP users should download and install DataBait_BROWSER into their browsers,
sign-in with their USEMP account and then, DataBait_BROWSER will facilitate goals
DataBait_B_GoalA - DataBait_B_GoalF, by directly collecting users’ actions within
their browsers.

Browser

USEMP User Client

Internet A

P

I

USEMP

SYSTEM

USEMP Back-End

DATABAIT_BROWSE

R as a browser add on

USEMP – FP7 611596 D7.1 Dissemination Level: PU

25
© Copyright USEMP consortium

3.2.1.2. Enabling DataBait_BROWSER as a Proxy (On-b oard or External)

A proxy is an intermediate server that sits between the client and the origin server12.
In order to get content from the origin server, the client sends a request to the proxy naming
the origin server as the target and the proxy then requests the content from the origin server
and returns it to the client. The client must be specially configured to use the forward proxy
to access other sites. Forward proxies are able to retrieve from a wide range of sources (in
most cases anywhere on the Internet). The terms "forward proxy" and "forwarding proxy" are
a general description of behaviour (forwarding traffic) and thus ambiguous.

Figure 3. DataBait_BROWSER as an On Board Proxy

Figure 4. DataBait_BROWSER as an External Proxy

Enabling DataBait_BROWSER as proxy would require:
• The development and creation of a proxy server. A proxy server could be either on

board i.e., operating within end-users device or externa l i.e., operating out-side
users device.

• In both cases, the users should download and install the server and then, sign-in with
their USEMP account.

12 http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse

Browser

USEMP User Client

Internet A

P

I

USEMP

SYSTEM

USEMP Back-End

DATABAIT_BROWSER

as an On-Board proxy

Browser

USEMP User Client

Internet A

P

I

USEMP

SYSTEM

USEMP Back-End

DATABAIT_BROWSER

as an External Proxy

USEMP – FP7 611596 D7.1 Dissemination Level: PU

26
© Copyright USEMP consortium

• DataBait_BROWSER would then facilitate partially goals DataBait_B_GoalA -
DataBait_B_GoalF by forwarding/proxy users’ actions/network traffic at their
browsers to USEMP back-end.
Concluding our analysis, let us interline that one of the main advantages of using an

external proxy server compared to an on-board is the ability of the first to support mobile
browsers . On the other hand, the process of installing an external proxy is much more
complicated for end-user.

3.2.1.3. Enabling DataBait_BROWSER as a Hybrid Solu tion

A Hybrid DataBait_BROWSER solution would consist of both: a browser plug-in and
an external proxy server. The reason behind such a solution is related to the complementary
features supported by the above two solutions, since an external proxy is the only solution
that fulfils USEMP technical requirements of supporting mobile browsers, while a plug-in
supports all the USEMP features requirements apart from the latter.

3.2.2. DataBait_BROWSER Technical Solution Identifi cation & Justification

Founded on the previous SoTA analysis and towards identifying the most appropriate
technical solution for developing and creating DataBait_BROWSER, a corresponding
competency matrix has been created. The completion of the latter emerged after
investigating and testing the capabilities of each of the four identified solutions.

Evaluation Criteria
Browser
Add-On

Proxy
(on board)

Proxy
(external)

Hybrid Solution
(Add-on &

External Proxy)

 Technical Requirements (Table 2 USEMP Tools Techni cal Requirements)

Web Browser Compatibility
Chrome,

Firefox, Safari
All All All

Mobile Browser Compatibility No No Yes Yes

Deployment / Installation
Yes

(user friendly)
Yes

(user friendly)
Yes

(not user friendly)
Yes

(not user friendly)

Tracking/Operation Traffic
Management Support

Yes Yes Yes Yes

 Feature Requirements (Table 1 USEMP Tools Function ality Requirements)

Supporting USEMP Features
Required

(DataBait_B_GoalA–F)
Yes No No Yes

Tracking Requirements (APPENDIX D. , Table 41: User Real -time Personal and
Behavioural Browsers Data and Table 42: Internet Se rvices that Track user’s

Data)

Supporting USEMP Data Tracking
Requirements

Yes No No Yes

 Platform Integration, Expandability and Scalability

USEMP System Architecture
Compatibility

Yes Partially Yes Yes

API Compatibility/Expandability Yes Yes Yes Yes

Open Source Solutions Yes Yes Yes Yes

Table 3 USEMP DataBait_BROWSER Technical Solution Competency Matrix

USEMP – FP7 611596 D7.1 Dissemination Level: PU

27
© Copyright USEMP consortium

Table 3 present in a concrete way the outgrowth of the conducted investigation. Let
us underline that apart from the support of USEMP technical, features and tracking
requirements; three additional characteristics have been examined related to a) solution’s
compatibility/integration with USEMP architecture, b) solution’s API compatibility and
expandability and finally, c) the existence of open source solutions that partially cover parts
of the envisioned functionality. The latter characteristic is strongly related to overall USEMP
ambition of creating an open source solution towards not only favouring a developers
community-based supported and evolved solution but also, favouring the vast distribution,
dissemination and use of the envisioned innovative solutions by end-users.

A close study of Table 3 reveals that the most suitable technical solution for enabling
DataBait_BROWSER is a as a browser extension/add-on, since it is the only solution that
support all tracking and features requirements compared to a proxy-based solution. This is
mainly related to browser’s add-on ability on accessing user generated data at the browser
(point of creation), while the proxy is accessing them at device network traffic level (after
their creation). On the other hand, browser add-on solution lacks mobile browser support.
This is due to the fact that existing mobile operating systems and corresponding mobile
browsers are not yet mature to support the extended use of add-ons. Thus, the only solution
that could support both mobile and web browsers is the hybrid one.

Conclusion: Towards a) adopting an incremental development process, b) targeting
to an efficient end-to-end prototype solution and c) given that a browser add-on solution can
be easily extended either to a hybrid one or to a mobile browser add-on,
DataBait_BROWSER will be implemented as a browser a dd-on for the most popular
web browsers (for Microsoft and MAC OS users) i.e., Chrome, Firefox and for MAC
Safari.

3.2.3. Selected Open Source Foundations

Prior to the analysis of the overall emerging architecture and the interaction points of
DataBait_BROWSER Tool with USEMP System (back-end services), in this section a short
overview of two existing open source browser add-on solutions are presented that fulfil a
small subset of the envisioned DataBait_BROWSER features and functionalities but could
serve as the foundations of USEMP Tool development.

• Lightbeam (for Firefox)
o Developer: Mozilla Firefox
o Licence: Mozilla Public License Version 2.0
o Browser Version Supported: Firefox 18 or higher. 13
o Link: Lightbeam 14
o Key Operations:

� OP1. Create a record of events for every site you visit and every third
party site that is stored locally on your browser.

� OP2. Visually graphs these events to highlight the interactions
between sites third parties.

� OP3. Privacy Control
• Chrollusion (for Chrome and Safari)

13 http://www.mozilla.com/en-US/firefox/fx/
14 https://github.com/mozilla/lightbeam

USEMP – FP7 611596 D7.1 Dissemination Level: PU

28
© Copyright USEMP consortium

o Developer: Mozilla Firefox
o Licence: GNU (GENERAL PUBLIC LICENSE)
o Browser Version Supported: Latest Chrome and Safari versions
o Link: Chrollusion15
o Key Operations:

� OP1. Create a record of events for every site you visit and every third
party site that is stored locally on your browser.

� OP2. Visually graphs these events to highlight the interactions
between sites third parties.

� OP3. Block the otherwise invisible websites tracking a user’s browser.
The following table summarizes the DataBait_BROWSER features supported by the above
open source projects.

G. #
Operation

Description
OPEN Source Solution Capabilities

G.A.

Tracking USEMP
Users Web

Behavioural/Personal
Data

Not Supported
Custom Tracker Creation and Integrated within the Plug-in is

required.
Integration: Sending raw data to the back-end via custom Flume-

based API.

G.B.

Tracking Users’
Trackers/Brands

Partially Supported
Plug-in should be properly extended to enable DataBait USTs and

features.
Integration: Apache Flume (back end) moving streaming data into

the Hadoop Distributed File System (HDFS).

G.C.

Client Side Privacy
Control and
Audience

Management

Partially Supported
Plug-in should be properly extended to enable DataBait USTs and

features.

G.D.

Client Side
Visualization

Not Supported
Custom client GUI towards representing user’s internet trackers (and

their activities) via enhanced visualisations can be supported via
plug-ins feeds.

G.E.
USEMP User
Authorisation
Authentication

Not Supported
Custom solution should be implemented.

G.F.

Visual & Graphical
Interactions

Not Supported
Custom client GUI towards representing user’s internet trackers (and

their activities) via enhanced visualisations can be supported via
plug-ins feeds.

Table 4. USEMP DataBait_BROWSER Open Source Solution Expected Features Coverage

15 https://github.com/disconnectme/chrollusion

USEMP – FP7 611596 D7.1 Dissemination Level: PU

29
© Copyright USEMP consortium

3.2.4. Overall Architecture and USEMP_API Integrati on

Concluding this sections analysis; the following figure provides a high level overview
of the emerging USEMP Tools client-side architecture a detailed analysis of the latter is
provided in the next chapter.

Figure 5. USEMP Client Tools Overall Architecture and API Anchor Points

DataBait_BROWSER browser add-on , upon installation in a USEMP user browser, will
communicate and interact with USEMP architecture via two anchor points.

• DataBait_AA , is USEMP authentication and authorization service towards a)
enabling USEMP users to register or log-in with their USEMP account as well as, b)
retrieving appropriate authorization token(s) that will allow the add-on to
communicate via USEMP_API with USEMP_SS back-end.

• USEMP_API, will enable the add-on to a) feed the users’ browsers generated
personal and behavioural data to USEMP System, as well as b) to retrieve the
outcome of USEMP Privacy and Value components towards serving as the visual
and graphical interface of USEMP services. The latter API will be implemented as a
custom Apache Flumes Channel. Apache Flumes16 is a distributed, reliable, and
open source service for efficiently collecting, aggregating, and moving large amounts
of streaming event data.

16 http://flume.apache.org/

USEMP – FP7 611596 D7.1 Dissemination Level: PU

30
© Copyright USEMP consortium

3.3. Social Network Integration
DataBait_OSN is not only one of the three USEMP client side Tools, but also one of

the key enablers of overall envisioned USEMP System, since it serves as the interface of the
latter with USEMP users’ Online Social Networks (OSNs). Specifically, the key goals of
DataBait_OSN are detailed in the following:

• DataBait_O_GoalA: Track USEMP users’ personal and behavioural data generated
and/or disseminated by them via their OSN (e.g., Facebook). Such data can be either
historical (i.e., data generated by the user prior creating a USEMP user account,
stored in the OSN system) or real-time (i.e., data generated by the user upon
creating a USEMP account) and should be fed into USEMP back-end system via
USEMP API (USEMP_API). The latter data will be collected via OSN’s exposed APIs
(OSN Graph API interspace17), denoted as OSN_API.

• DataBait_O_GoalB: To enable USEMP users to visually and graphically interact
with DataBait_OSN in an intuitive and QoE optimised way.

• DataBait_O_GoalC: To support mechanisms that minimize the imposed network
traffic overhead (due to DataBait operation) in order not to affect the performance of
the related devices/browsers.

• DataBait_O_GoalD: To enable USEMP users to control the operation of the tool in
terms of making them aware of every action performed by DataBait_OSN and how
the latter affects their privacy.

• DataBait_O_GoalE: To enable USEMP users authenticate/authorise via
DataBait_OSN in to their USEMP account via DataBait_AA in a common and
transparent way across browsers.

• DataBait_O_GoalF: To enable proper throttling mechanisms in order to reassure
their efficient operation, given OSN API calls limitations.
Prior to the analysis of available technical and architectural solutions for enabling

DataBait_OSN towards fulfilling the above goals, an in depth SoTA analysis on modern
popular OSN networks architectures is provided placing emphasis a) on OSN Graphs API
attributes (i.e., the mechanism OSNs store, process and exploit end users personal data; b)
OSN API (i.e., the mechanism OSNs make the latter data publicly online available); as well
as c) OSN limitations (i.e., imposed limitations by OSNs in the use of their APIs towards
controlling their architecture load as well as the availability of their service).

3.3.1. Online Social Networks OSN Architectures (Gr aph API analysis)

Todays’ OSNs are cloud-based services, featuring a broad scale of functionalities
(from location based services and photo sharing, to social networking and interactions) that
have revolutionised the way we communicate, connect, share and eventually conduct
business. An emerging trend to expose OSNs functionalities through publicly available APIs
(Application Programming Interfaces) has not only redefined how software and services are
delivered, but also indicates how business value is moving towards a thriving high-paced
mobile application ecosystem. The main OSN service design approaches are:

17 http://en.wikipedia.org/wiki/Social_graph

USEMP – FP7 611596 D7.1 Dissemination Level: PU

31
© Copyright USEMP consortium

• Web Services (WS-*) . According to W3C (2004a, 2004b), a Web service is a
software system designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web Service in a manner
prescribed by its description using SOAP-messages, typically conveyed using HTTP
with an XML serialisation in conjunction with other Web-related standards i.e.,
o REST-compliant Web services, in which the primary purpose of the service is to

manipulate XML representations of Web resources using a uniform set of

"stateless" operations; and

o Arbitrary Web services, in which the service may expose an arbitrary set of

operations.

• RESTful Web Services that focus on a system's resources, including how resource
states are addressed and transferred over HTTP by a wide range of clients written in
different languages. A concrete implementation of a REST Web service follows four
basic design principles (IBM, 2008):
o Use HTTP methods explicitly (i.e. To create a resource on the server, use POST;

To retrieve a resource, use GET; To change the state of a resource or to update
it, use PUT; To remove or delete a resource, use DELETE).

o Be stateless.
o Expose directory structure-like URIs.
o Transfer XML, JavaScript Object Notation (JSON), or both.

• JavaScript APIs built on JavaScript (JS), an open source client-side scripting
language, and allowing access via HTTP (through a browser or a server HTTP
connection) by making a call to a script on another server. They are typically client-
side script APIs, for use in browsers and similar user agents.
Due to the constantly increased popularity and use of OSNs, a paradigm shift in their

service design towards REST is noticed, indicated by its adoption by mainstream Web 2.0
service providers (including Google+ and Facebook, Twitter— who have deprecated or
passed on SOAP and WSDL-based web services in favour of an easier-to-use, resource-
oriented model to expose their services). Towards a more in depth analysis, in the following
table the main design characteristics of three OSN services are provided. The platforms
qualified to be analysed, i.e. Facebook, Twitter and LinkedIn, were expected to be selected
because of their popularity.
Let us further underline the following observation relating an OSN’s architecture and the
envisioned operation of DataBait_OSN:

• Note 1 st. An OSN is Cloud-based Service, collecting, storing and processing users’
personal data via OSN Graph API.

• Note 2 nd. OSN user’s personal data are accessible only via RESTful APIs, where
JSON is the most commonly used data format.

• Note 3 rd. The use of OSNs API is limited by strict API calls/duration threshold.
Typically, a Graph API consists of objects, aggregations and connections, while

objects can be connected with other secondary objects. Additionally, every object and
aggregation is uniquely addressable through an id existing on the main path of an API.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

32
© Copyright USEMP consortium

Facebook paved the way towards an API design based on objects with its Graph API18; a
unique index and a simplified dictionary for recurring, connected methods, while others, like
RunKeeper, followed up with a similar approach.

Service Name Facebook Twitter LinkedIn

API Name Facebook Graph API v2.0
REST API
version 1.1

LinkedIn API

Description

The Graph API is the primary way to
get data in and out of Facebook's

social graph. It's a low-level HTTP-
based API that you can use to query
data, post new stories, create check-
ins or any of the other tasks that an

app might need to do.

The most
recent version
of the Twitter
REST API.

The REST API provides a
simple, consistent

representation of people,
companies, jobs, and the

interactions and relationships
between them.

Documentation Facebook Graph-API19 Twitter API 20 LinkedIn API 21

Protocol REST/JavaScript REST REST/JavaScript

Data Format JSON JSON JSON
Available
Libraries

JavaScript/PHP/Python
JavaScript/Jav
a/PHP/Python

JavaScript/Java/PHP/Python

Call Limitation
Not specified (approx. 50 requests/ 30

min)
350

requests/hour
100k requests/day

Authentication
Method

OAuth 2.0 OAuth 2.0 OAuth 1.0

Table 5 Popular OSN Designing Principles

18 https://developers.facebook.com/docs/graph-api
19 https://developers.facebook.com/docs/graph-api
20 https://dev.twitter.com/docs/api/1.1
21 https://developer.linkedin.com/apis

USEMP – FP7 611596 D7.1 Dissemination Level: PU

33
© Copyright USEMP consortium

3.3.2. DataBait_OSN Technical Options Identificatio n & Solution Justification

In this section, DataBait_OSN technical solution and corresponding architecture is
analysed and justified, compared to current SoTA commonly adopted solutions. Prior to our
analysis let us underline that in the rest of this section Facebook (FB) terminology has
been adopted (as detailed in FB Graph API v2.0 22). The reasoning is threefold. First, FB
Graph API is the most advanced, extended and widely used OSN API in recent years.
Second, Facebook is the prime OSN that will be investigated and exploited in USEMP.
Finally, due to the common use and abstraction of FB Graph API, a DataBait_OSN that is
developed for realising goals DataBait_OSN_A - DataBait_OSN_G in the case of Facebook
(i.e., a DataBait_FB), can be easily extended/adopted to support a large variety OSNs (e.g.,
Twitter, Runkeeper, LinkedIn, etc.) that follow the same or similar Graph API principles.

The prime way for apps and services to access (read and write) OSN users’ personal
volunteered and/or behavioural data is via OSN’s social graph, namely OSN Graph API.
Thus, in order DataBait_OSN to achieve its goals, it should be designed either as an OSN-
enabled native mobile application (one per OS e.g., Android, iOS, WP8) or as an OSN-
enabled web/mobile web application. Therefore, in order to support both mobile and desktop
users, and to avoid the development of multiple native applications per OS:

In order for an OSN-enabled web application to access users’ Graph API personal

data, the following steps need to be followed towards enabling end users’ to log-in via their
OSN account. At a high level those steps are (as defined in the link23):

• Checking user’s login status to see if they are already logged into the app.
• If they are not logged in, to invoke the login dialog and ask for a set of data

permissions. This step is very important, since it determines the way an OSN allows
its users to control the privacy of their personal data by explicitly determining which of
the latter can be accessed by an application.

• Verify user’s identity.
• Store the resulting access token provided by the OSN.
• Make API calls.
• Logout.

The above process reveals that in order an OSN application (i.e., DataBait_OSN) to

access users’ personal data, when USEMP users’ connect to the latter via OSN Login, the
app should be able to obtain an access token which provides temporary, secure access to
OSN Graph APIs.

22 https://developers.facebook.com/docs/graph-api/using-graph-api/v2.0
23 https://developers.facebook.com/docs/facebook-login/login-flow-for-web/v2.0

Designing Principle I. DATABAIT_OSN will be developed as an OSN-enabled web

application supporting both mobile and desktop browsers.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

34
© Copyright USEMP consortium

An access token is an opaque string that identifies a user, app, or page and can be

used by the DataBait_OSN web application to make Graph API calls. Access tokens are
obtained via a number of methods and corresponding architecture design, as detailed in the
following. The token includes information about when the token will expire and which app
generated the token. There are different types of access tokens to support different use
cases (as defined in Facebook documentation24):

• User Access Token – The user token is the most commonly used type of token.
This kind of access token is needed any time the app calls an API to read, modify or
write a specific person's data on their behalf. User access tokens are generally
obtained via a login dialog and require a person to permit an app to obtain one25.

• App Access Token – This kind of access token is needed to modify and read the
app settings. It is generated using a pre-agreed secret between the app and OSN
and is then used during calls that change app-wide settings. An app obtains an app
access token via a server-to-server call26.

• Page Access Token – These access tokens are similar to user access tokens,
except that they provide permission to APIs that read, write or modify the data
belonging to an OSN Page.

• Client Token - The client token is an identifier that you can embed into native mobile
binaries or desktop apps to identify an app. The client token isn't meant to be a
secret identifier because it's embedded in applications.

In line with the previous analysis, the way DataBait_OSN obtains/manages users’

access tokens plays a crucial role in the overall operation. To that end, let us underline the
fact that OSN access tokens are portable . This means that once an OSN application

24 https://developers.facebook.com/docs/facebook-login/access-tokens
25 https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens
26 https://developers.facebook.com/docs/facebook-login/access-tokens#apptokens

Designing Principle VI. In order DATABAIT_OSN web application to properly operate, it

should allow USEMP users to Login via their OSN-related account credentials towards

obtaining users’ access token.

Designing Principle III. In order DATABAIT_OSN web application to properly operate, it

 should be subscribed as an OSN-enabled application towards obtaining an app access token

Designing Principle II. DATABAIT_OSN should efficiently manage the process of

 obtaining, storing and updating OSN API generated access tokens.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

35
© Copyright USEMP consortium

obtains a token, the latter can be generally used from any machine - server, client or
otherwise. In our case, this means that once DataBait_OSN gets an OSN user access token,
then the latter can be used by USEMP System back-end in order to establish a server-to-
server communication and retrieve a user’s personal data.

Moreover, combining web interfaces and servers provides a mix of different possible
configurations that can be realised. However, different configurations come with different
trade-offs in terms of capabilities and security. In the rest of this section, the most popular
configurations/architectures are analysed, while their pros and cons are justified towards
determining the most suitable for enabling DataBait_OSN.

3.3.2.1. Architecture Option A.

“Login happens in a Web Client & API requests happen in a Web Client”
Advantages:

• Simple to implement.
• Authentication is not required often with long-term token.

Disadvantages:
• API Communication Load affect client device (since all the data are retrieved by

client device/application (i.e., DataBait_OSN) and then forwarding to the served
(USEMP_SS).

• No offline posting and communication is enabled.

Figure 6. DataBait_OSN Architecture Option A: API Requests Enabled at the Web Client

USEMP – FP7 611596 D7.1 Dissemination Level: PU

36
© Copyright USEMP consortium

3.3.2.2. Architecture Option B.

“Login happens in a Web Client & API requests happen on a Server”
Advantages:

• API Communication Load is not affecting client device (since all the data are directly
retrieved by the served (USEMP_SS).

• Offline posting and communication is enabled.
• Advanced security features are available with server-based calls.

Disadvantages:
• Harder to be implement.
• Client should proxy access token calls.

Figure 7. DataBait_OSN Architecture Option B: API Requests Enabled at the Server

Moreover, due to the following requirements:
• DataBait_OSN should be able to obtain large volumes of USEMP users’ OSN

personal data to support various USEMP System Algorithms;
• DataBait_OSN should be able to obtain historical data (in an offline manner in order

not to affect users QoE);
• DataBait_OSN should be able to support offline data retrieval, since USEMP system

algorithms will constantly process USEMP user data;
Architecture Option B is the most suitable for DataBait_OSN, thus:

USEMP – FP7 611596 D7.1 Dissemination Level: PU

37
© Copyright USEMP consortium

Designing Principle V . DATABAIT_OSN will be implemented as an OSN-enabled

web/mobile web application where users’ login and access tokens management is ambled

in a Web Client, while API requests happen on a USEMP System (via a proper Apache

 Flumes Channel).

USEMP – FP7 611596 D7.1 Dissemination Level: PU

38
© Copyright USEMP consortium

3.3.3. DataBait_OSN and OSN API Limitations

The previously defined five DataBait_OSN design principles determine the
technology that will be used and the corresponding architecture that will be enabled. In this
section, additional principles are determined, defining additional sub-
components/algorithms/features that should be realised towards addressing various
drawbacks that emerge due to OSNs API limitations.

• OSN Graph API Rate Limiting. As defined in FB documentation27, there are 3 types
of throttling for FB Graph API calls, but similar principles and limitations hold for all
OSN cases (as shown in Table 5). Specifically, each API call goes through these
different levels of throttling during its lifetime. What is more, when an API call passes
the top level throttling, it is subject to be throttled at the second level and so on.

• There are three types of throttling for an OSN Graph API Calls:
o User Level Rate Limiting (affecting all the API calls for the same USEMP

user)
o App Level Rate Limiting (affecting all the API calls for the same USEMP user

via all her/his OSN apps);
o Specific API Level Rate Limiting (affecting all the API calls for ALL USEMP

users);
Towards avoiding the latter, especially when considering large volumes of USEMP users,

• Real-Time User Object Retrieval. As a consequence of the above limitation, special

attention should be placed in the design and support of real-time OSN users’
personal data retrieval. Specifically, instead of continuously searching OSN users’
Graph API for new created objects OSNs Real-time User Objects Alterations

Notifications28 feature will be incorporated in DataBait_OSN. Thus, every time a
users’ object is created, then OSN API will communicate this change to the
DataBait_OSN. The latter will be then filtered and based on sophisticated priority
rules will be forwarded to the USEMP_SS for being further processed.

27 https://developers.facebook.com/docs/reference/ads-api/api-rate-limiting/
28 https://developers.facebook.com/docs/graph-api/real-time-updates/v2.0

Designing Principle VI. DATABAIT_OSN should be enforced with sophisticated throttling

algorithms that will respect OSNs API Limitations and thus, prevent any OSN denial of

 service effects.

Designing Principle VII . DATABAIT_OSN should support sophisticated real-time user

 object alterations notifications’ management mechanisms.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

39
© Copyright USEMP consortium

• Multi-Lingual OSN Data. Targeting the creation of USEMP Services that can

support multiple geographies and user languages, DataBait_OSN should be able to
feed USEMP Systems (and corresponding algorithm) with uniform data that could be
further processed. To that end, DataBait_OSN should be integrated with OSN’s
Localisation Localization & Translation29 features towards translating OSN user’s
data prior to their processing by the back end USEMP System.

3.3.4. Overall Architecture and USEMP_API Integrati on

The following table justifies how the previously defined DataBait_OSN design
principles, as well as the emerging technical and architecture solution, can reassure the
fulfilment of the under consideration USEMP Tool goals (as defined at the beginning of this
section).

G. # DataBait_OSN Feature
DataBait_OSN Designing

Principle

G.A.
Tracking USEMP Users OSN Behavioural/Personal

Data (Historical and Real Time)
DP I, DP II, DP IV

G.B. Client Side Visualisation DP I, DP I

G.C. Minimise Imposed Traffic Overhead DP I, DP III, DP IV, DPV

G.D. Explicit Privacy Control DP II, DP III, DP IV

G.E. USEMP User Authorization Authentication DP II, DP IV

G.F. OSN Limitations Support DP VI, DP VII, DPVIII

Table 6 DataBait_OSN Designing Principles mapped to Tool’s Goals

Concluding this sections analysis, the following figure provides a high level overview

of the emerging (so far) USEMP Tools client-side architecture, a technical detailed analysis
of the latter is provided in the next chapter.

29 https://developers.facebook.com/docs/internationalization

Designing Principle VIII . DATABAIT_OSN should support sophisticated user data

 localization mechanisms.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

40
© Copyright USEMP consortium

Figure 8. USEMP Client Tools Overall Architecture and API Anchor Points

DataBait_OSN web/mobile web application , upon USEMP user Login, will

communicate and interact with USEMP architecture via two anchor points (interface is
identified in Figure 8 arrow 1).

• DataBait_AA, is USEMP authentication and authorisation service towards a)
enabling USEMP user to register or log-in with their USEMP account (the interface is
identified in Figure 8 arrow 2).

• USEMP_API, will enable a) the client web app to manage OSN access tokens and
establish a stable USEMP System - OSN Back-end communication and b) feed
users’ OSN generated personal and behavioural data to USEMP System via a
Flumes enabled server-to-server communication interface. The interface identified in
Figure 8 arrow 3 is USEMP_API instance (a) and arrow 4 is the USEMP_API
instance (b) characterised as server-to-server.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

41
© Copyright USEMP consortium

3.4. GUI Components
DataBait_GUI, the third USEMP Tool analysed in this section, will serve as USEMP

graphical users’ interface, enabling USEMP users to access, visualise, exploit and interact
with USEMP services and features via their computers and/or mobile devices. Specifically,
DataBait_GUI will be a developed as web/mobile-wed application, supporting various device
and browser types (e.g., desktop pc, tablet and mobile device browsers) towards reassuring
cross-platform, cross-device and cross-browsers compatibility and rendering optimisation.

The following table summarises DataBait_GUI goals and expected features, collected
via USEMP WP2 (use cases and UST), WP4 (Legislations) and WP6 (Privacy and Value
Design Interface) requirements and specifications.

G. #
DataBait_GUI
Requirement

Requirement Features Analysis
WP Requirement

Definition

G.A.
DataBait Users

Account
Management

USEMP Log-in (via DataBait_AA Server
Communication)

USEMP OSN Log-in (OSN Auth.)
USEMP User Registration

WP2 and WP7

G.B.
DataBait User

GUI
Visualization

USEMP User Profile
USEMP User Privacy

USEMP User Trackers
USEMP Value Insights

USEMP Audience / Influence
USEMP Privacy Notifications (pop-up)

WP2, WP4 and WP6

G.C.
Explicit Privacy

Control

Tracking Services/Activities Control
Audience Management Settings
Personal Data Protection Setting

Notifications Setting
Term of Use

USEMP Service Deactivation

WP2, WP4 and WP7

G.D.
Technical

Requirements

Cross Web Browser Compatibility
Cross Mobile Browser Compatibility

No Deployment / Installation Required
WP2 and WP7

Table 7 DataBait_GUI Features and Goals

3.4.1. DataBait_GUI Web Application Development

The objective of this section is to describe a number of state-of-the-art development
methodologies and guidelines for the creation of mobile rich media content web
application, such as DataBait_GUI. First, the selection of building DataBait_GUI as
web/mobile web app and not as native application is justified and then, different designing
approaches on delivering the mobile content of an application are analysed.

3.4.2. On Developing DataBait_GUI as a Web/Mobile W eb App - Smartphones &
Tablets Support Challenges

Smartphones and tablets are becoming increasingly popular as part of consumers
digital lifestyle in European countries. These devices are used for consuming entertainment
and increasingly learning content and in some cases are also integrated as part of the official
curriculum. The most popular vendors of operating systems (and in some cases devices
themselves) are Apple with its iOS operating system and Google with its Android operating
system. Content and applications for these devices are primarily developed in three formats:

USEMP – FP7 611596 D7.1 Dissemination Level: PU

42
© Copyright USEMP consortium

• Web applications: these are rich media mobile sites that can also operate without
network connectivity after they have been accessed. These are primarily developed
in HTML5 and JavaScript taking advantage of the increasing support from tablet and
smartphone vendors.

• Native applications: these are native applications, which are distributed by the
device vendors’ purpose made application devices that can be accessed from the
devices. Each vendor has usually its own application development framework.
Examples are: Objective C and iOS SDK for Apple iOS devices and Java and
Android SDK for Google Android devices

• Native media formats: these are media formats for content that can be published
and controlled in vendors’ content stores. For example Apple has developed the
iBook format for its Book storefront to iOS devices and Amazon has developed KF8
format for its own Kindle store devices.

The main web application development advantages are summarised below:
• Multi-platform – the developed web app code can run in multiple platforms and

browsers;
• Instant iteration - no delays in the publication of new features and content (since

there is no approval process with the application update);
• No approval process - no limitations placed on content or subject matter;

DATABAIT_GUI Design I. Aiming at the creation of a DATABAIT_GUI that works on

all desktop and mobile devices the option of a web application format has been

 selected. The main technologies that will be used are HTML5, CSS and JavaScript.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

43
© Copyright USEMP consortium

3.4.3. On DataBait_GUI Responsive Design - Cross Pl atform Mobile Web Design
for Smartphones/Tablets

The main design and development challenges in web/mobile web applications (for
tablets and smartphones) are related with the diversity of capabilities and content rendering
approaches in various devices OS and mobile web browsers. Specifically, a mobile web
application should:

• render without defaults in various device screen sizes should be supported;
• handle/support different media types for various mobile devices;
• support techniques for optimising user experience that vary based on device OS type

and browser version;
• support integration with 3rd party applications;

In the rest of this section, two SoTA common approaches are used to minimise the
complexity and increase the efficiencies in developing rich media web applications for
smartphones and devices are analysed.

3.4.3.1. Fluid Web/Mobile Web App Design

In a fluid website layout, also referred to as a liquid layout, the majority of the
components inside the app have percentage widths and thus, adjust to the user’s screen
resolution.

Figure 9. Example of Fluid Design

The Figure above depicts a fluid (liquid) website layout. While some designers may
give set widths to certain elements in fluid layouts, such as margins, the layout in general
uses percentage widths so that the view is adjusted for each user. The fluid web app design
better fits the cases which a mobile-only delivery targeted approach is being utilised

• Advantages
o the fluid design can be easily implemented and understood by rich media

authors, since it has one design that fits all screen resolution factors;
o the application content will render without defaults to both smartphones and

tablets;
• Disadvantages

o Cannot take into advantage the additional screen real estate which is
available to tablets and larger devices (usually the design is based on the
smallest screen to be supported), in most cases a different fluid design should
be devised for larger factors devices (like tablets).

USEMP – FP7 611596 D7.1 Dissemination Level: PU

44
© Copyright USEMP consortium

3.4.3.2. Responsive Web/Mobile Web App Design

Responsive design takes the approach of progressively defining additional elements
that can be added as the resolution/width of the screen device increases. The responsive
design approach is based on a number of significant resolution screen sizes that are used
commonly by devices. In the Figure below a plot of the most important resolutions for
screens from desktops (PC) to tablets and smartphones (resolutions below 240x320 are
really reserved for mobile phones which are not smartphones) is depicted.

Figure 10 Popular Devices Screen Resolutions and their Popularity with New Devices

The more common approach for a responsive design is to define three (3) design

variants for three large classes of devices (mobile/tablet and desktop). The designs are
progressive, adding more elements as the screen factor increases (see below for an
example of such a responsive design on who existing elements are re-positioned in the
screen and new elements are added as more screen real-estate becomes more available).

Figure 11 Example of Responsive Design

USEMP – FP7 611596 D7.1 Dissemination Level: PU

45
© Copyright USEMP consortium

With the recent advances in web standards and responsive design techniques, it is
now possible to provide a progressive, gradually enhanced experience across a wide array
of browsers, using one HTML5 document and a variety of different Cascading Style Sheets
(CSS). This approach does not selectively deliver content to the user through browser
sniffing or server-side device detection, but is rather requesting by the mobile browser itself
to render only the supported web technologies. Moreover, mobile devices that fall under the
smartphone category currently have superior mobile browsers and support for HTML5 when
compared to feature phones.

• Advantages
o Responsive design provides additional content taking advantage of the

additional screen size for larger devices like tablets and desktops (PCs).
o Application content renders without defaults to both smartphones and tablets.
o This approach is aligned with the development approach in which one web

app handles both desktop and mobile.
• Disadvantages

o responsive design requires additional effort and training to develop how the
additional content should be placed by rich media applications designers for
additional screen factors

DATABAIT_GUI Design II. Aiming at creating a layout that support large audiences,

with multi-browsers, multiple OS and supporting desktop, tables and high-end mobile

devices, DATABAIT_GUI will follow a responsive design format.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

46
© Copyright USEMP consortium

3.4.4. DataBait_GUI Web Application Development Des igning Principles

In the previous section, emphasis is placed on justifying the two main technical
design principles that will be followed for the development of DataBait_GUI (i.e., web/mobile
web app with responsive design). In this section emphasis is placed on the User Interface
(UI), User eXperience (UX) and QoE design principles that need to be followed towards
optimising USEMP end users’ experience. To that end, the following areas are analysed:

• Privacy-by-Design founded on EU Legislations
• Existing SoTA Approaches in User Personal Data Privacy Representations
• Overall UI/UX Principles (that need to be followed given the complexity of presented

information).
• Due to space limitations and the nature of this deliverable, a detailed report of the

latter findings is not included.

3.4.4.1. Privacy-By-Design - On EU Legislations and Directives.

An issue of high importance in the design of USEMP DataBait_GUI is the compliance
with EU Directives in the area of digital data privacy, since in order USEMP System to
enable the envisioned features and functionalities has to act an end-users personal data
collector and controller. To that end, Data Protection Directive [Directive 95/46/EC on the
protection of individuals with regard to the processing of personal data and on the free
movement of such data] has been mainly studied, placing emphasis on:

• E-Privacy Directive [Directive 2002/58, mended by Directive 2006/24/EC and

Directive 2009/136/EC], especially the topics related to personal data stored and

managed by smart devices.

• Article 5 of the E-Privacy Directive, related to application developer and the use of

end-user personal data accessed and stored via their application.

In line with the above, the types of data stored on or generated by a smart device are
personal data, whenever they relate to an individual, who is directly (such as by name) or
indirectly identifiable to the controller or to a third party. (e.g., Location, Contacts, Unique
device and customer identifiers (such as IMEI13, IMSI14, UDID1 and mobile phone
number), Identity of the data subject, Identity of the phone (i.e. name of the phone), Credit
card and payment data, Phone call logs, SMS or instant messaging, Browsing history, Email,
etc.). As detailed in Appendix IV, the majority of the above data will be accessed via
DataBait_GUI (and USEMP Tools).

Thus, “An app developer may use third party libraries with software that provides
common functionalities, such as for example a library for a social gaming platform. The app
developer must ensure users are aware of any data processing undertaken by such libraries
and if that is the case, that such data processing is compliant with the EU legal framework,
including where relevant, by obtaining the consent of the user. In that sense, app developers
must prevent use of functionalities that are hidden from the user.”

DATABAITp_GUI Design III. Aiming at enabling a privacy-by-design application,

DATABAITp_GUI will be developed in line with corresponding EU Legislations and

 Directives.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

47
© Copyright USEMP consortium

3.4.4.2. On Personal Data Monitoring/Management App lications and Initiatives

A vast amount of current initiatives that address aspects of personal data
management and privacy has been investigated, documented and analysed, from publicly
available solutions to research driven efforts. As characteristic examples, we refer to:

• Mycrocosm 30, an innovative platform that allows to track and share personal data
and statistical graphs;

• MIT Open PDM (ID3), a platform that allows users to collect, store, and give fine-
grained access to their data all while protecting their privacy;
Current research efforts have been investigated and analysed in two key areas: a)

personal data management and visualisation and b) usability studies on how end-users
perceive the use and management of their digital data, in term of practicality, privacy
dimensions criticality, etc. As characteristic examples we refer to:

• Stanford’s Centre for Internet & Society project (Aleecia McDonald, Director of
Privacy);

• W3C P3P, “The Platform for Privacy Preferences”;
• Nano-Notice, a privacy disclosure study at a mobile scale;

The design of DataBait_GUI will take into consideration the latter studies.

3.4.4.3. ON DataBait_GUI Visualisation and Designs Principles

Founded on the above SoTA analysis above, USEMP DataBait_GUI user experience
(UX) and user interface (UI) designing principles haven derived and documented, which will
serve as the core designing beacons of USEMP DataBait_GUI prototype.

• Navigation Technique. Returning / frequent users will not have to go over the same

steps again and again. Techniques to facilitate their user experience will be applied
and their choices will be remembered and be on the top or pre-selected.

• Give options without complicating . Asking a thousand things confuses and
annoys users. We will not make everything a matter of choice; we will just offer the
option to amend pre-defined selections if needed.

• One step at the time . We won’t ask users to do everything at once. We will guide
them carefully through multiple steps

• Work on ways to allow correct navigation . Every screen cannot be identical with
the previous one but the user need to be able to understand where they are, how
they have got there and what are they supposed to do.

• We won’t reinvent the wheel! We don’t need to write an application from the ground
up and this is not the correct way of doing it. We use shortcuts and techniques that

30 Mycrocosm by MIT Media Lab, for more details go to
http://www.media.mit.edu/research/groups/1452/mycrocosm

DATABAITp_GUI Design IV. Aiming at optimising USEMP end user QoE the

 following UX design principles will be followed.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

48
© Copyright USEMP consortium

are already the market standard. The user will be pleased if he can apply what he
already knows from other apps.

• Offering ownership . Allows the user to make the customizations that will make him
feel the application is built for him.

• Keep it brief . Short sentences but very well written is the key.
• Notifications. Notifications will be managed through Settings. You can adjust

whether you want notifications on your lock screen or whether you do not want them
at all. You can turn on/off the Notifications sound features.

DataBait_GUI will provide an "Authentically Digital" experience following the principles (for
more details in WP4 task 4.3):

• The design language places emphasis on good typography

• Titles and important info appear in large font size.

• Design language can be characterised as "sleek, quick, modern, intuitive, playful"

• It is flat and without flourish

• The UI recommends consistent acknowledgement of transitions, and user

interactions (such as presses or swipes) by some form of natural animation or

motion.

3.4.4.4. ON DataBait_GUI Web Accessibility Options

• Web Browser Accessibility Optimisation Settings . A plethora of key features will

added to the front-end of the DataBait_GUI that enable accessibility and
personalization, available for use through web browser (such as, text size and style,
contrast (multiple options), line spacing, template language, use of different layout,
Text To Speech functionality etc.).

• W3C Web Content Accessibility Guidelines 2.0 Compli ance. DataBait_GUI
content and HTML will be designed and developed in line with W3C Web Content
Accessibility Guidelines 2.0, to ensure compliance with 3rd party assistive tools (e.g.
screen-readers, magnifiers etc.).

DATABAITp_GUI Design VI. Towards supporting USEMP user with a wide range of

disabilities, two levels of accessibility features will be considered in the design of

 DATABAITp_GUI

DATABAITp_GUI Design V. Aiming at optimising USEMP end user QoE the

 following UI design principles will be followed.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

49
© Copyright USEMP consortium

3.4.5. Overall Architecture and USEMP_API Integrati on

The following table justifies how the previously defined DataBait_GUI Design
principles, as well as the emerging technical and architecture solution, can reassure the
fulfilment of the under consideration USEMP Tool goals (as defined at the beginning of this
sub-section).

G. #. DataBait_GUI Feature
DataBait_GUI Designing

Principle

G.A. DataBait Users Account Management DP I

G.B. DataBait User GUI Visualization DP II, DP IV, DP V, DP VI

G.C. Explicit Privacy Control DP III

G.D. Technical Requirements DP I, DP II

Table 8 DataBait_GUI Designing Principles mapped to Tool’s Goals

Concluding this sections analysis; the following figure provides a high level overview

of the emerging final USEMP Tools client-side architecture (a technical detailed analysis of
the latter is provided in the next chapter).

Figure 12. USEMP Client Tools Overall Architecture and API Anchor Points

DataBait_GUI web/mobile web application , upon USEMP user Logins, will
communicate and interact with USEMP architecture via two anchor points.

• DataBait_AA is the USEMP authentication and authorisation service towards a)
enabling USEMP user to register or login with their USEMP account.

• USEMP_API will enable the web app to retrieve USEMP Services information and
graphically present them to the end users.
Concluding this section’s analysis, let us underline that with the scope of this

deliverable, the main technical development attributes and frameworks for creating
DataBait_GUI have been analysed and justified. The actual UI design of the DataBait_GUI in
terms of UI/UX flows and a number of mock-up designs will take place within the framework
of WP6 Task 6.3.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

50
© Copyright USEMP consortium

3.5. Backend Services
3.5.1. Introduction to Big-Data

From the requirements of the USEMP_TOOLS and the SoTA investigation done on
the DataBait_OSN (see section Erreur ! Source du renvoi introuvable. with the Erreur !
Source du renvoi introuvable.) and the interface to enable the publically available sources
(see section 4.2.1 interface name “connect sources (various)”) the model of Big-Data
analytics is chosen. Processing of any collection of data sets so large and complex that it
becomes difficult to process using on-hand database management tools or traditional data
processing applications is characterised as Big-Data processing31.

Processing of the Big-Data is performed by the processing elements of USEMP
(Technical Components, Privacy Profiling and Value Estimate). The USEMP framework
needs to accommodate the processing elements of USEMP and able to scale, be flexible
with multiple databases, able to orchestrate and schedule of data between processes. This
framework should also be open-source in order to avoid constraints towards technologies,
programming languages, scalability and licencing fees. USEMP big data framework provides a
parallel processing model that can support processing of huge amount of data that relate to
USEMP use cases and developed tools.

The basis for USEMP framework that can support the listed requirements above
regarding the enabling technology for the services-framework is the Apache Hadoop based
on Hortonworks distribution 32 33 34 and in particular MapReduce35 (see Figure 13)
functionality. There are alternatives to Hadoop but less popular and/or not open source (for
example ‘Hydra’36, Pentaho37).

In addition to the big data support for USEMP developed services & tools, the
selection of Hadoop as the basis for USEMP framework allows the experimentation with
different options for the physical cloud infrastructure (use of private cloud, public cloud or
hybrid cloud services) that can depend on the seasonality of the computational resources
required for USEMP analysis tasks, the overall audience for USEMP services and the
business value/cost model that can be considered for USEMP services.

31 Information from http://en.wikipedia.org/wiki/Big_data and
http://searchcloudcomputing.techtarget.com/definition/big-data-Big-Data
32 http://hortonworks.com/hdp/
33 http://hortonworks.com/hadoop-modern-data-architecture/#
34 http://www.datanami.com/2013/11/06/oltp_clearly_in_hadoops_future_cutting_says/#mostRead
35 http://wiki.apache.org/hadoop/MapReduce
36 http://www.datanami.com/2014/03/12/hadoop_alternative_hydra_re-spawns_as_open_source/
37 http://www.pentaho.com/

USEMP – FP7 611596 D7.1 Dissemination Level: PU

51
© Copyright USEMP consortium

Figure 13. MapReduce Hadoop system

The OSN and the Publically available sources (“connect sources(various)”) instances
of Big-Data gathering and processing in USEMP_SYSTEM requires data channelling from
the remote system (outside USEMP_SYSTEM) to the USEMP_SS. The OSN sourcing of
information follow the path OSN database � DataBait_OSN � to USEMP_SS and the
“connect sources(various)” follow an equivalent path to the OSN from publically available
sources on the web � “connect sources(various)” � USEMP_SS subsystem (see Figure
16. USEMP_SYSTEM architecture – TOP-LEVEL in section 4.2.2 USEMP_SS Subsystem -
Component Specification).

The interfaces instances of DataBait_OSN and “connect sources (various)” will
enable “reliable, repeatable, and simple framework for managing the flow of data in and out
of” 38 big-data into the MapReduce system. The options for such a loading and management
of data are Flacon39, Oozie40, Sqoop41 and Flume42. From reading the options of loading and
management of data the advantages of Flume are many. Flume43 lets users make the most
of valuable log data. Specifically, Flume allows users to:

• Stream data from multiple sources into Hadoop for analysis

• Collect high-volume Web logs in real time

• Insulate themselves from transient spikes when the rate of incoming data exceeds

the rate at which data can be written to the destination

• Guarantee data delivery

• Scale horizontally to handle additional data volume

38 “Load and manage data according to policy” of http://hortonworks.com/hdp/
39 “What Falcon Does” of http://hortonworks.com/hadoop/falcon/
40 “What Oozie Does” of http://hortonworks.com/hadoop/oozie/
41 “What Sqoop Does” of http://hortonworks.com/hadoop/sqoop/
42 “What Flume Does” of http://hortonworks.com/hadoop/flume/
43 “What Flume Does” of http://hortonworks.com/hadoop/flume/

Data

Final

Result

Data Algorithm

Data Set Reduction

ProcessProcess Process

MapReduce System

Distribute Algorithm

Combine Results

USEMP – FP7 611596 D7.1 Dissemination Level: PU

52
© Copyright USEMP consortium

Once the Flume has completed the streaming of data from the publically available
sources or through DataBait_OSN the data is stored in the Hadoop Distributed File System44
(HDFS). “HDFS is designed to be a scalable, fault-tolerant, distributed storage system”
works closely with MapReduce system (see Figure 13). Following the storage of data the
MapReduce system utilises: the stored data in HDFS45 and the USEMP processing
elements (description in section 3.6.1 to 3.6.13) to produce the analytics visualised by the
DataBait_GUI (see requirements in section Erreur ! Source du renvoi introuvable.)

3.5.2. USEMP API (client - server communication)

In the USEMP_SYSTEM, the server-side (or back-end) services requirements are
many and complex with main emphasis in enabling the interfaces with the client-side,
enabling Authorisation and Authentication against a database on the server side, data-
acquisition from the OSN, data-acquisition from the publically available domains and data
processing-management within the USEMP-SS.

USEMP TOOLS
component name

Interface instance
name

USEMP_SS
component name

Functional requirement (Section #. #)

DataBait_BROWSER
USEMP_API with

“HISTORICAL DATA
DB”

Technical
Components
subsystem

“DataBait_B_GoalA: Track USEMP users’ personal,
behavioural, tracking-information (see features

coverage in Table 4) data generated via their web
browser(s) (either explicitly or implicitly) and feed the
latter into USEMP back-end system via USEMP API”

(section 3.2.1 and 3.2.4)

DataBait_BROWSER

USEMP_API with (a)
“HISTORICAL DATA

DB”
USEMP_API with (b)

“PRIVACY DB”

(a) “Technical
Components”

subsystem
(b) “ TC

Enhancement
Process”

subsystem

…”(a) feed the users’ browsers generated personal
and behavioural data to USEMP System, as well as
(b) to retrieve the outcome of USEMP Privacy and

Value estimation components towards serving as the
visual and graphical interface of USEMP services.”

(section 3.2.4)

DataBait_OSN or
DataBait_FB

USEMP_API (b) with
“HISTORICAL DATA
DB” and AA_Account

(a)

(b) Technical
Components

subsystem and (a)
Identity_Manager

component

USEMP_API, will enable (a) the client web app to
manage OSN access tokens and establish a stable
USEMP System - OSN Back-end communication *

(b) Feed users’ OSN generated personal and
behavioural data to USEMP System via a Flumes
enabled server-to-server communication interface”

(from Section 3.3.4).
* Restrictions/limitations on the server-to-server

OSN_API are included in section 3.3.3

DataBait_GUI
USEMP_API (a) with

PRIVACY_DB
And DataBait_AA (b)

(a) “TC
Enhancement

Process”
subsystem and (b)
Identity Manager

component

(a) “USEMP_API, that will enable the web app to
retrieve USEMP Services information and graphically

present them to the end users” (section 3.4.5)
(b) …”enabling USEMP user to register or log-in with

their USEMP account” (section 3.4.5)

Table 9 USEMP_API interface features requirements summary

The USEMP_API instance that enables data-acquisition from the publically available

domains (outside the USEMP_SYSTEM) requires a per database access instance interface
because the volume of data and potential restrictions imposed on access suggests Big-Data

44 “Hadoop Distributed File System (HDFS)” of http://hortonworks.com/hadoop/hdfs/
45 “Hadoop Distributed File System (HDFS)” of http://hortonworks.com/hadoop/hdfs/

USEMP – FP7 611596 D7.1 Dissemination Level: PU

53
© Copyright USEMP consortium

analysis model46 (on top of the DataBait_OSN). Examples of publically available information
sources are images databases47. Logos databases, Wikipedia48 content etc. The
placeholder-interface that enables access the ‘publically available information sources’ is
labelled in the architecture as “connect sources (various)” (see section 4.2 Figure 16 and
Table 13: USEMP_SS component – component specification). This interface is an instance
of the USEMP_API which enable the acquisition of data for the processes in the Technical
Components subsystem which have such prerequisites for the respective processing to
occur.

3.5.3. USEMP DataBait_AA

The interfaces in USEMP_SS that enables the security, authorisation and
authentication cross-checking in the USEMP_TOOLS (client-side) are identifiable by
DataBait_AA. DataBait_AA is an interface instance is utilised in all the USEMP_TOOLS and
the functional requirements are summarised Table 10.

USEMP tool name
Interface instance

name
USEMP_SS

service name
Functional requirement (Section #. #)

DataBait_BROWSER DataBait_AA
Identity_Manager

component
Enabling USEMP users to register or log-in with

their USEMP account (section 3.2.4)

DataBait_BROWSER DataBait_AA
Identity_Manager

component

Retrieving appropriate authorisation token(s) that
will allow the add-on to communicate via

USEMP_API with USEMP_SS back-end (section
3.2.4)

DataBait_OSN
DataBait_AA and

AA_Account
Identity_Manager

component

“The client web app to manage OSN access
tokens and establish a stable USEMP System -

OSN Back-end communication” (section 3.3.4) The
access tokens need to be crosschecked with

OSN_USER credentials that are accessible in the
USEMP_SS.

DataBait_OSN

DataBait_AA and
credentials are

stored in the CredDB
(USEMP_SS

component diagram)

Identity_Manager
component

USEMP authentication and authorisation service
towards enabling USEMP user to register or log-in
with their USEMP account (section 3.3.4). USEMP
user by making an account with USEMP_SYSTEM

the access-tokens are generated.

DataBait_GUI DataBait_AA
Identity Manager

component

Part of the ‘WP Requirements’ WP2 and WP7 is to
have features like USEMP login, Authorisation,
User Registration (section 3.4.1 Table 7 and in

section 3.4.5)

Table 10 DataBait_AA interface features requirements summary

3.6. Analytic Modules
The ‘Analytic Modules’ are a group of processes that are kindly provided by the

consortium members with multiple characteristics and options where the documentation and
description is available in USEMP deliverable documents D2.2 and D2.1. Following-up the
general characteristics, requirements and readiness of the Technical Components
implementations, in the following sections each Technical Component is described in detail
(where possible) the way that could be utilised within the USEMP_SS. For a consolidated list
of commands, parameters and output type’s description see APPENDIX F.

46 Information from http://en.wikipedia.org/wiki/Big_data and
http://searchcloudcomputing.techtarget.com/definition/big-data-Big-Data
47 A website that contains 1.3 billion Facebook profile pictures! http://app.thefacesoffacebook.com
48 http://en.wikipedia.org/wiki/Wiki

USEMP – FP7 611596 D7.1 Dissemination Level: PU

54
© Copyright USEMP consortium

3.6.1. Face Detection

The face detection tool takes image as input and outputs a prediction about the
presence of one or several faces in the image. The tool will function in library mode as
follows

Detection<FaceDetection> faceDet = face_detector.detect(BufferedImage img, PredictionParams params);

Prior to the execution of the method, the face detector must be initialized with a given

model:

FaceDetector face_detector = new FaceDetector(DetectionResource detectionModel, Params params);

Alternatively, the model may be hard-coded and loaded by default at initialization:

FaceDetector face_detector = new FaceDetector (Params params);

3.6.2. Face Recognition

The face recognition tool takes a list of detected faces in an image as input and
outputs a prediction about the presence of one or several faces from a predefined list in the
image. The tool will function in library mode as follows

Recognition<FaceRecognition> face_recognized = face_recognition.recognize(Detection<FaceDetection>
faceDet, , PredictionParams params);

Prior to the execution of the face recognition method, the face recognizer must be

initialized with a model:

FaceRecognizer face_recognition = new FaceRecognizer (RecognitionResource recognitionModel, Params
params);

Alternatively, the model may be hard-coded and loaded by default at initialization:

FaceRecognizer face_recognition = new FaceRecognizer(Params params);

3.6.3. Logo Recognition

The logo detection tool takes image as input and outputs a prediction about the
presence of one or several logos from a predefined list in the image. The tool will function in
library mode as follows

Logo< LogoRecognition > logos = logo_recognizer.detect(BufferedImage img, PredictionParams params);

Prior to the execution of the method, the logo recognizer must be initialized with a

given model:

LogoRecognizer logo_recognizer = new FaceDetector(LogoResource model, Params params);

Alternatively, the model may be hard-coded and loaded by default at initialization:

LogoRecognizer logo_recognizer = new FaceDetector(Params params);

USEMP – FP7 611596 D7.1 Dissemination Level: PU

55
© Copyright USEMP consortium

3.6.4. Multimedia Similarity

The multimedia similarity tool takes multimedia documents as inputs and outputs a
prediction about their degree of similarity (i.e. similarity score). The tool will function in library
mode and we foresee the following functioning mode.

Multimedia<MultimediaSimilarity> mmSim = mm.computeSimilarity(MultimediaFeatures mmFeats1, mmFeatures

mmFeats2, TextResources textModels, ImageResources imgModels, PredictionParams params);

Prior to the execution of the multimedia similarity method, an internal call will be

made to TextSimilarity, in order to extract text and/or image features and then to combine
them:

TextSimilarity textFeats = txtfextractor.extract(BufferedText text, FeatureParams params);
MultimediaSimilarity imgFeats = imgfextractor.extract(BufferedImage img, FeatureParams params);
MultimediaFeatures mmFeats = merger.merge(TextFeatures textFeats, ImageFeatures imgFeats);

The above methods should be publicly exposed because they are also used by

Opinion Mining and Content Location modules.

3.6.5. Text Similarity

The text similarity tool takes two texts as inputs and outputs a prediction about their
degree of similarity (i.e. similarity score). The tool will function in library mode as follows.

Text<TextSimilarity> textSim = text.computSimilarity(TextFeatures textFeats1, TextFeatures textFeats2,
TextResources textModels, PredictionParams params)

Prior to the execution of the text similarity method, an internal call will be made to

TextSimilarity in order to extract text features:

TextSimilarity textFeats = txtfextractor.extract(BufferedText text, FeatureParams params);

The above method should be publicly exposed because it is also used by Opinion

Mining and Content Location modules.

3.6.6. Opinion Mining

The opinion mining tool takes text features as input and outputs predictions (scores)
about the opinion expressed in the input with three possible values: positive, neutral or
negative. The tool will function in library mode as follows:

Opinion<OpinionMining> opin = opinion.extract(TextFeatures textFeats, OpinionResources opinionModels,
PredictionParams params);

Prior to the execution of the opinion mining method, an internal call will be made to

TextSimilarity in order to extract text features:

TextSimilarity textFeats = txtfextractor.extract(BufferedText text, FeatureParams params);

The above method should be publicly exposed.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

56
© Copyright USEMP consortium

3.6.7. Content Location

The content location tool takes a text features, image features or a combination of the
two as inputs and outputs predictions (scores) about the most probable geographic location
of that document. Location is expressed as a pair of latitude-longitude coordinates. As a
result, we foresee three functioning modes, depending on the type of input (text alone,
image alone, text and image).

Coordinates<ContentLocation> coord = content.locate(TextFeatures textFeats, ImageFeatures imgFeats,
TextResources textModels, ImageResources imgModels, PredictionParams params);

Coordinates<ContentLocation> coord = content.locate(TextFeatures textFeats, NULL, TextResources
textModels, NULL, PredictionParams params);

Coordinates<ContentLocation> coord = content.locate(NULL, ImageFeatures imgFeats, NULL, ImageResources
imgModels, PredictionParams params);

Prior to the execution of these methods, these variants will internally make calls to

text and image feature extractors from TextSimilarity and MultimediaSimilarity respectively
with the following calls:

TextSimilarity textFeats = txtfextractor.extract(BufferedText text, FeatureParams params);
MultimediaSimilarity imgFeats = imgfextractor.extract(BufferedImage img, FeatureParams params);

The above feature extraction methods from TextSimilarity and MultimediaSimilarity

should be publicly exposed

3.6.8. Personal Attribute Multimedia Predictor

The personal attribute multimedia predictor takes in images or image features and
outputs predictions (scores) for a set of given concepts/attributes of interest (e.g. smoking,
drinking, etc.). As a result, we foresee two variants of the method in library mode:

List<AttributePrediction> preds = predictor.predict(BufferedImage img, PredictionParams params);
List<AttributePrediction> preds = predictor.predict(ImageFeatures feats, PredictionParams params);

The first variant of the method will internally make a call to an appropriate feature

extraction method of the form:

ImageFeatures feats = fextractor.extract(BufferedImage img, FeatureParams params);

In case such features are used by other modules (e.g. Multi-Modal Similarity), the

above method should be publicly exposed and used by all dependent modules.
In both variants of the function, one should note that the AttributeMultimediaPredictor

module should be initialized with an appropriate classification model once, since the model
might be time-consuming to load (i.e. a big file):

AttributeMultimediaPredictor predictor = new AttributeMultimediaPredictor(MultimediaModel mmodel);

See D2.2, section 4.8 for an example of the intended behaviour for this model.

3.6.9. Personal Attribute Behavioral Predictor

USEMP – FP7 611596 D7.1 Dissemination Level: PU

57
© Copyright USEMP consortium

The personal attribute behavioural predictor takes in a list of Facebook likes and a list
of visited webpages and outputs predictions (scores) for a set of given concepts/attributes of
interest.

List<AttributePrediction> preds = predictor.predict(List<UserActivity> transactions, PredictionParams params);

Where UserActivity should model both a Facebook like (i.e. contain an id of the liked

Page or Post) and a visited webpage (i.e. contain a URL and time of visit). The same
initialization consideration holds for this module as well: The AttributeBehavioralPredictor
should be initialized with an appropriate classification model once, since the model will be
time-consuming to load:

AttributeBehaviouralPredictor predictor = new AttributeBehaviouralPredictor(BehaviouralModel bmodel);

See D2.2, section 4.9 for an example of the intended behaviour for this model.

3.6.10. Word Count

The word count function takes in raw text and outputs statistics on the input text. This
is performed differently dependent upon whether the system is run from the command line,
or in library mode in which the text can be directly streamed into the system.

Figure 14. Word Count TC – example diagram

The primary parameters are the input text and then flags to define the addition
optional settings.

• Command-line Mode . In command line mode, text must be input as plain text files.
The URI to the file is required along with the associated options passed as flags. If
custom word lists are used these must be also be passed as new line delimited text
files containing word black lists.

java –jar wordcount.jar \path\to\input.txt

java –jar wordcount.jar \path\to\input.txt –wr –pr
java –jar wordcount.jar \path\to\input.txt –wr –pr –bl \path\to\blacklist.txt

In the first case the system is run with default parameters (word reduction and

plurality reduction disabled, no blacklist). In the second case word reduction (-wr) and
plurality reduction (-pr) and enabled. Finally in the third case a blacklist (-bl) is defined with
all options turned on.

• Library Mode. In library mode, textual data must be streamed in via a ‘StringStream’
object. This allows for any type of text to be submitted for statistical calculation, or
even a number of files to be processed together as one. In this version, the system
is directly pulled into a Java program for execution. Input files must first be prepared

USEMP – FP7 611596 D7.1 Dissemination Level: PU

58
© Copyright USEMP consortium

in order to be presented as a StringStream. The system can then be used as a
standard java library:

WordStatistics ws = WordCount(StringStream input, bool WordReduction, bool PluralityReduction, List BlackList)

3.6.11. Tracking and Analytics

Tracking and Analytics Tool goal is to obtain advanced USEMP user-centric profile
information based on the analysis, synthesis and aggregation of their personal and
behavioural data collected in USEMP_SS Historical DB. Specifically the Tool will filter
incoming raw data collected at USEMP_SS Historical DB via USEMP_Tools per user and
per time period and thus, generate value metadata regarding a user’s profile such as:

• The top most frequently visited URLs (sites) by the user during a specific time
duration;

• The top most frequently visited domain by the user during a specific time duration;
• The top most frequent online activates by the user during a specific time duration;
• The volume of users OSN actions (e.g., #likes/comments/shares) over a time period;
• The distribution of users new friends over time;
• The frequency a user interacts with an OSN, the average time spend, and her/his

popular activities;
The latter result will be stored periodically in USEMP Privacy DB, towards updating

overall users profile and thus, to be accessible via ETL_Orchestrator component towards the
rest of USEMP Tools to access them.
In order to achieve the above goal/operation Tracking and Analytics Tool will use the
following method in library mode:

List<UserProfileAggregationsAttributes> upag= analytics.aggregate(user id, time_period_start, time_period_end,

user profile attributes);

The function will take as input a) USEMP user unique ID, b) the timestamps of the

under consideration period and c) the parameters that need to be estimated (from a
given/predefined list) i.e., one or more of the above user profile metrics and thus, provide as
output the values of thee required metrics in a list.

3.6.12. PRIVACY PROFILING

The purpose of privacy profiles is to provide a succinct, yet informative representation
(compared to the raw transactions/data representation) that will be useful for a number of
applications: ad targeting, article/product recommendation, friend recommendation, etc.
There are different components in a privacy profile, e.g. demographic attributes, thematic-
topic interests, personality traits, etc. A more detailed description of the user profiling
representation takes place in the context of WP6 and will be made available in D6.1.

This processing component requires accessing of the raw (straight from
USEMP_TOOL) dataset of HISTORICAL_DATA_DB information stored within the
USEMP_SS and the results from the Technical Components in order to perform effectively
the analysis of Privacy Profiling factors.
Several of the aforementioned privacy profile components may be modelled using one or
more of the following representations:

USEMP – FP7 611596 D7.1 Dissemination Level: PU

59
© Copyright USEMP consortium

• Vector of concepts/attributes and associated scores: In that case a set of concepts/
attributes of interest need to be selected (e.g. by using an established taxonomy
such as IAB or dmoz.org in case of topic-oriented profiling or an established
psychological profiling framework such as the Five Factor Model) and each user is
represented by a vector of scores across the selected concepts/attributes. Scores
indicate the extent to which a user is well characterised by the corresponding
concept/attribute.

• Vector of keywords and associated scores: This is similar to the previous
representation with the exception that it is not required to select a pre-specified list of
concepts, but the vector could contain arbitrary keywords. This is typically a finer-
grained, yet lower-level (and potentially less meaningful) profile representation.

• Latent space representation: This constitutes an abstract representation that
attempts to model a user as a low-dimensional vector in the Euclidean space.
Although this representation is not useful for human interpretation, it can be used by
data mining components, e.g. for the classification of a user into one of a number of
target classes or to compute similarities between users (useful for recommender
systems).

3.6.13. VALUE ESTIMATION

Value Estimate (denoted as Value_Estimate is USEMP_SS Diagram) is one of
USEMP System’s post-metadata processors, part of TC_Enhancement_Process subsystem.
The purpose of Value Estimate is to provide USEMP users an intuitive estimation of the
value of their digital personal data shared online (either directly shared in social networks
(e.g., Likes of FB) or indirectly collected by various network actors that track their web
browser activities), in terms of:

• Economic value insights of their personal information disseminated online;
• A dynamically obtained value of a user’s created data that will further depict the

corresponding privacy compromises made;
A detailed description of the USEMP Value Estimate component and the

corresponding algorithm that will be implemented takes place in the context of WP6 and will
be made available in D6.2.

In this section, the envisioned technical characteristic of the Value Estimate
component are highlighted, placing emphasis on a) the required input/output interfaces and
data modelling as well as, b) the definition of the sub-components it will consist of.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

60
© Copyright USEMP consortium

Figure 15. USEMP Value Estimate Component High Level Diagram

As depicted in the above Figure 15, Value Estimate requires as input:
• From PrivacyProfiling_Process, multiple USEMP users’ privacy profile components

attributes such as: digital data enhanced profile, vector of concepts/attributes and
associated scores, vector of keywords and associated scores and latent space
representation;

• From ETL_Orchestrator, USEMP users’ trackers profile attributes (i.e., online
tracking/analytics services such as ad networks, brand, analytics, that collect users
personal data from the browsers and OSNs);

• From ETL_Orchestrator, USEMP users’ audience estimations and profile (i.e., user
OSN friend and followers that affect/interact via their OSN actions);

The latter information will be processed, aggregated and fed into the following sub-
components:

• Audience Estimation & Influence Estimation Componen t, will obtain normalised
indicators how relevant a USEMP user profile is to different stakeholders. Moreover,
an estimation of the volume USEMP user audience will be obtained.

• Affinity Estimation (of user personal data) Compone nt, will compute a ranking of
USEMP user’s content base [affinity, weight, time decay] (e.g., the potential ranking
of a type of post], indicator of his potential rewording by a brand when she/he clicked
Likes on pages of these brands, posted pictures of himself using these brands on the
web, uploaded movies mentioning the brand or when he liked posts on the web
related to the brand.

The above subcomponents will feed the final sub-component of Value Estimate i.e.
• Digital Data Value Insights, that will derive a normalised value of USEMP users’

digital data and social footprint that they either directly shared in social networks
(e.g., Likes of FB) or were indirectly collected by various network actors that track
their activities on his web browser.
The outgrowth of the above sub-component will be fed and stored in USEMP Privacy

DB. Then, via USEMP_API Value Estimate information will be provided to DataBait_GUI
toward presenting the latter to USEMP users in intuitive graphical representations.

PrivacyProfiling_
Process

ETL_Orchestrator

ETL_Orchestrator

USEMP – FP7 611596 D7.1 Dissemination Level: PU

61
© Copyright USEMP consortium

4. System Architecture, Interfaces and
Integration

4.1. System Overview
The overview of the USEMP_SYSTEM is described in the concept architecture with

the technical characteristics of the architecture-components. In this section the components,
interfaces and interactions are going to be visualised at top-level and subsystem level. The
top-level of the USEMP_SYSTEM is presenting the main the interaction (interface and ports)
between the client-side subsystem (USEMP_TOOLS subsystem) and the server-side
services and processes subsystem (USEMP_SS subsystem). The second-level to the
architecture includes characterisation of the subsystems components and interfaces. These
diagrams constitute the technical specifications of how the parts of the system are to be
integrated across the system as a whole.

USEMP – FP7 611596 D7.1 Dissemination Level: PU

62
© Copyright USEMP consortium

4.2. USEMP_SYSTEM Integration

USEMP_SYSTEM component diagram

Figure 16. USEMP_SYSTEM architecture – TOP-LEVEL

USEMP – FP7 611596 D7.1 Dissemination Level: PU

63
© Copyright USEMP consortium

The build-priority of components included in Figure 16. USEMP_SYSTEM

architecture – TOP-LEVEL is documented bellow.

Component
Priority

(1: highest i.e. first prototype …
4: lowest last prototype-optional)

Reason

USEMP_TOOLS 1

USEMP_SS 1

Table 11: USEMP_SYSTEM Architecture – component priority

4.2.1. USEMP_TOOLS Subsystem - Component Specificat ion

Component Name Name = USEMP_TOOLS

Subsystem = USEMP_SYSTEM
Purpose (what, not how) USEMP_TOOLS is a subsystem that includes client side components where the interaction

with the OSN_USER actor are managed.
Inputs Authorisation and Authentication credentials cross-check is verified by the Identity manager

and the response is provided by USEMP_SS component (DataBait_AA)
A post-processing instance is provided from USEMP_SS in order to present the
USEMP_WORLD_VIEW to OSN_USER by DataBait_GUI about the OSN interactions
collected and processed by USEMP_SS (PRIVACY_DB)

Outputs DataBait_BROWSER collects a digital trail dataset and is communicated to the USEMP_SS
for further processing using the USEMP_API port (part of the HISTORICAL_DATA_DB)
Day zero instance only is an instance where the OSN_USER created a USEMP account and
provides the credentials (to Identity Manager component) needed by USEMP_SS to acquire
the OSN datasets for processing (DataBait_AA)
OSN_USER credential are cross-checked by Identity Manager component (DataBait_AA)

Dependencies OSN_USER (actor)
‘connect Source (various)’ (external)

Interfaces DataBait_AA | required (Normal operation of USEMP_SYSTEM)
DataBait_AA | provided (on USEMP_SYSTEM install-day-0 only)
HISTORICAL_DATA_DB | provided
PRIVACY_DB | required

Ports ClientSide_AA | direction: bi-directional
USEMP_API | direction: bi-directional

Contracts DataBait_AA | contract: invariant | OSN_USER credential need to be cross-checked using the
identity manager
USEMP_API port | contract: pre-condition | Components inside the USEMP_TOOLS can
interact with the USEMP_SS using the USEMP_API only when the credential have been
cross-checked.

Diagram USEMP_TOOLS Subsystem component is shown in Figure 16. USEMP_SYSTEM
architecture – TOP-LEVEL

Table 12: USEMP_TOOLS component – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

64
© Copyright USEMP consortium

4.2.2. USEMP_SS Subsystem - Component Specification

Component Name Name = USEMP_SS

Subsystem = USEMP_SYSTEM
Purpose (what, not how) USEMP_SS is a subsystem that includes server side components of the USEMP_SYSTEM

where the information from the OSN are processed and the OSN_USER credentials are
managed.

Inputs Authorisation and Authentication credentials cross-check is verified by the Identity manager
(DataBait_AA)
Digital-trail from the client-side plugins (HISTORICAL_DATA_DB)
Open source data from wiki, images DB, news DB etc. (‘various connect (various)’)
OSN data is pulled using the DataBait_FB directly to the HISTORICAL_DATA_DB (‘connect
source (various)’)

Outputs Authorisation and Authentication credentials cross-check is verified by the Identity manager
(DataBait_AA)
A post-processing instance is provided from USEMP_SS in order to present the
USEMP_WORLD_VIEW to OSN_USER by DataBait_GUI about the OSN interactions
collected and processed by USEMP_SS (PRIVACY_DB)

Dependencies OSN accounts by OSN_USER (actor)
‘connect source (various)’ (external)
Identity Manager (component)

Interfaces DataBait_AA | provided
‘connect Source (various)’ | dependency
HISTORICAL_DATA_DB | required
PRIVACY_DB | provided

Ports ServerSide_AA | direction: bi-directional
Content&metadata | direction: input
P&E-metadata | direction: output

Contracts DataBait_AA | contract: invariant | OSN_USER credential need to be cross-checked using the
identity manager
Content&metadata port | contract: pre-condition | Collect the prerequisites
HISTORICAL_DATA_DB content and metadata for the Technical_Components (Subsystem).
Content&metadata port | contract: pre-condition | Collection of information from open-sources
is essential for the processing that occurs in Technical_Components (Subsystem)
P&E-metadata port | contract: post-condition | The content&metadata from USEMP_SS
processing occurring in Technical Components (Subsystem) and TC_Enhancement_Process
(Subsystem) is accumulated in the PRIVACY_DB where the graphical overlay will be applied
and visible (by the OSN_USER) on the DataBait_GUI

Diagram USEMP_SS subsystem component is shown in Figure 16. USEMP_SYSTEM architecture –
TOP-LEVEL

Table 13: USEMP_SS component – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

65
© Copyright USEMP consortium

4.3. USEMP_TOOLS Integration
USEMP_TOOLS subsystem component diagram

Figure 17. USEMP_TOOLS – subsystem component diagram

USEMP – FP7 611596 D7.1 Dissemination Level: PU

66
© Copyright USEMP consortium

The build-priority of components included in Figure 17 is documented bellow.

Component
Priority

(1: highest i.e. first prototype …
4: lowest last prototype-optional)

Reason

DataBait_GUI 1 Serving as the main USEMP User GUI.

DataBait_BROWSE
R

1 Serving as the prime USEMP user persona online data
collector.

DataBait_FB 1 Serving as the prime USEMP user persona online data
collector.

Table 14: USEMP_TOOLS – subsystem component priority

4.3.1. DataBait_GUI - Component Specification

Component Name Name = DataBait_GUI

Subsystem = USEMP_TOOLs
Purpose (what, not how) DataBait_GUI will serve as USEMP graphical users’ interface, enabling USEMP users to

access, visualise, exploit and interact with USEMP services and features via their computers
and/or mobile devices. Specifically, DataBait_GUI will be a developed as web/mobile-wed
application, supporting various device and browser types (e.g., desktop pc, tablet and mobile
device browsers) towards reassuring cross-platform, cross-device and cross-browsers
compatibility and rendering optimisation.

Inputs DataBait_AA: Authorisation and Authentication credentials cross-check. Response is provided
by USEMP_SS component (DataBait_AA)
USEMP_API: A post-processing instance is provided from USEMP_SS in order to present the
USEMP_WORLD_VIEW to OSN_USER via USEMP API.

Outputs USEMP_WORLD_VIEW and ultimately USEMP_OSN (ultimately the end user)
Dependencies OSN_USER (actor)

‘connect Source (various)’ (external)
Identity Manager (component)

Interfaces DataBait_AA | provided
‘connect Source (various)’ | dependency
USEMP_API | provided
HISTORICAL_DATA_DB | required
PRIVACY_DB | provided

Ports ClientSide_AA | direction: bi-directional
USEMP_API | direction: bi-directional

Contracts DataBait_AA | contract: invariant | OSN_USER credential need to be cross-checked using the
identity manager
USEMP_API port interaction | contract: pre-condition | Components inside the
USEMP_TOOLS can interact with the USEMP_SS using the USEMP_API only when the
credential have been cross-checked.

Diagram DataBait_GUI is a component part of the Figure 17. USEMP_TOOLS – subsystem component
diagram

Table 15: DataBait_GUI – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

67
© Copyright USEMP consortium

4.3.2. DataBait_BROWSER - Component Specification

Component Name Name = DataBait_BROWSER

Subsystem = USEMP_TOOLs
Purpose (what, not how) DataBait_BROWSER is browser plug-in (add-on), supporting for the most popular web browsers

i.e., Chrome, Firefox and Safari, and will serve as users’ digital trail tracker and aggregator,
specific to the browser utilized by the data-subject (USEMP User).
1) Track USEMP users’ personal and behavioural data generated via their web browser(s) (either
explicitly or implicitly) and feed the latter into USEMP back-end system via USEMP API, denoted
as USEMP_API.
2) Tack USEMP users’ trackers, in terms of 3rd party online tracking and analytics services, that
monitor and collect end-users digital trail on their web browser(s).
3) Enable USEMP users to identify their web browser tracker(s) and thus, define fine-grained do
not track (DNT) rules (in a flexible and intuitive manner).

Inputs DataBait_AA: Authorisation and Authentication credentials cross-check. Response is provided by
USEMP_SS component (DataBait_AA)
USEMP_API: A post-processing instance is provided from USEMP_SS in order to present the
USEMP_WORLD_VIEW to OSN_USER via USEMP API.

Outputs USEMP_WORLD_VIEW and ultimately USEMP_OSN (ultimately the end user)
Dependencies ‘connect Source (various)’ (external)

Identity Manager (component)
Interfaces DataBait_AA | provided

‘connect Source (various)’ | dependency
USEMP_API | provided
HISTORICAL_DATA_DB | required

Ports ClientSide_AA | direction: bi-directional
USEMP_API | direction: bi-directional

Contracts DataBait_AA | contract: invariant | OSN_USER credential need to be cross-checked using the
identity manager
USEMP_API port interaction | contract: pre-condition | Components inside the USEMP_TOOLS
can interact with the USEMP_SS using the USEMP_API only when the credential have been
cross-checked.

Diagram DataBait_BROWSER is a component part of the Figure 17. USEMP_TOOLS – subsystem
component diagram

Table 16: DataBait_BROWSER – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

68
© Copyright USEMP consortium

4.3.3. DataBait_OSN - Component Specification

name Component Name = DataBait_OSN

Subsystem = USEMP_TOOLs
Purpose (what, not how) DataBait_OSN is an OSN-enabled web/mobile web application (e.g., a Facebook

application), which will function cross-browser and across user’s device. DataBait_OSN
and will enable USEMP users to log-in to the OSN account and thus, provide USEMP
System access to their OSN stored personal data.

Inputs Authorisation and Authentication credentials cross-check is verified by the Identity
manager and the response is provided by USEMP_SS component (DataBait_AA)
A post-processing instance is provided from USEMP_SS in order to present the
USEMP_WORLD_VIEW to OSN_USER by DataBait_GUI about the OSN interactions
collected and processed by USEMP_SS (PRIVACY_DB)

Outputs DataBait_AA: Authorisation and Authentication credentials cross-check. Response is
provided by USEMP_SS component (DataBait_AA)
USEMP_API: A post-processing instance is provided from USEMP_SS in order to
present the USEMP_WORLD_VIEW to OSN_USER via USEMP API.

Dependencies USEMP_WORLD_VIEW and ultimately USEMP_OSN (ultimately the end user)
Interfaces ‘connect Source (various)’ (external)

Identity Manager (component)
 DataBait_AA | provided
‘connect Source (various)’ | dependency
USEMP_API | provided
HISTORICAL_DATA_DB | required

Ports ClientSide_AA | direction: bi-directional
USEMP_API | direction: bi-directional

Contracts DataBait_AA | contract: invariant | OSN_USER credential need to be cross-checked
using the identity manager
USEMP_API port interaction | contract: pre-condition | Components inside the
USEMP_TOOLS can interact with the USEMP_SS using the USEMP_API only when the
credential have been cross-checked.

Diagram DataBait-FB is a component part of the Figure 17. USEMP_TOOLS – subsystem
component diagram

Table 17: DataBait_FB – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

69
© Copyright USEMP consortium

4.4. USEMP_SS Integration

USEMP_SS subsystem component diagram

Figure 18. USEMP_SS Subsystem –component diagram

USEMP – FP7 611596 D7.1 Dissemination Level: PU

70
© Copyright USEMP consortium

The build-priority of components included in Figure 16. USEMP_SYSTEM

architecture – TOP-LEVEL is documented bellow.

Component
Priority

(1: highest i.e. first prototype …
4: lowest last prototype-optional)

Reason

Identity Manager 1

Technical Components
(Subsystem)

1

TC_Enhancement_Process
(Subsystem)

1

Table 18: USEMP_SS Subsystem – component priority

4.4.1. Identity Manager - Component Specification
Component Name Name = Identity Manager

Subsystem = USEMP_SS

Purpose (what, not how) Identity Manager is a component that provides credentials and cross-checking of
credentials throughout the USEMP_SYSTEM. DataBait_AA is the dedicated interface
for the Identity Manager to communicate to the client-side when cross-checking is
required.

Inputs A new OSN_USER is created and the credentials are stored in the CredDB
(DataBait_AA and CredDB)
An OSN_USER logs-in to the DataBait_GUI requires credentials cross-checking
(DataBait_AA, AA_Account and CredDB)
USEMP_SS processes are dependent on the credentials to acquire the right
content&metadata (AA_Account, CredDB)
USEMP_TOOLS subsystem provides on day zero the credentials when the OSN_USER
is creating account to the USEMP_SYSTEM (DataBait_AA)

Outputs Day zero instance only is an instance where the OSN_USER created a USEMP account
and provides the credentials (to Identity Manager component) needed by USEMP_SS to
acquire the OSN datasets for processing (DataBait_AA)
OSN_USER credential are cross-checked by Identity Manager component and the DB
of users (DataBait_AA, CredDB)

Dependencies OSN_USER (actor)
CredDB (DB interface)
DataBait_FB port OSN_USER_ID (component port)

Interfaces DataBait_AA | required
DataBait_AA | provided (on USEMP_SYSTEM install-day-0 only)
CredDB | provided
AA_Account | provided

Ports ServerSide_AA | direction: bi-directional
credentials | direction: bi-directional

Contracts DataBait_AA | contract: invariant | OSN_USER credential need to be cross-checked
using the identity manager
DataBait_AA | contract: invariant | OSN_USER credential need to be provided to the
CredDB
AA_Account interface | contract: pre-condition | Components inside the USEMP_SS can
interact when the credential have been cross-checked with the CredDB.

Diagram Identity_Manager is a component part of the Figure 18. USEMP_SS Subsystem –
component diagram

Table 19: Identity Manager – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

71
© Copyright USEMP consortium

4.4.2. Technical Components Subsystem - Component S pecification

Component Name Name = Technical_Components (Subsystem)

Subsystem = USEMP_SS
Purpose (what, not how) This subsystem encapsulates three distinct processes

• orchestrate of content&metadata coming in
• orchestrate commands and parameters to the Technical Component processes
• orchestrate the content&metadata results (TC_processOutput) from the

Technical Component processes
Inputs Source open-data from various-sources like image DB, wiki-DB, various media news

reports etc. (connect source (various))
USEMP_TOOLS collection of data from DataBait_BROWSER and DataBait_FB is made
available through the USEMP_API and processed in the Technical_Components
(Subsystem) (HISTORICAL_DATA_DB)

Outputs The processed content and metadata from this component is made available for further
processing in TC_Enhancement_Process (Subsystem) (TC_C&M)

Dependencies Identity_Manager (component)
Interfaces Connect source (various) | required

HISTORICAL_DATA_DB | required
TC_C&M | provided

Ports Content&metadata | direction: output
TC_processOutput | direction: input

Contracts Connect source (various) | contract: pre-condition | open sources of information that the
Technical component require to train or process the information against need always to be
there
HISTORICAL_DATA_DB and AA_Account | contract: pre-condition | a complete set of the
information from the DataBait_FB and the Digital Trail set from the DataBait_BROWSER
needs to be available with the OSN_USER account cross-checked to process using the
Technical Components processes.
TC_C&M | contract: post-condition | the outcome of the Technical Components is made
available after the processing is complete.

Diagram Technical_Components Subsystem is a component part of the Figure 18. USEMP_SS
Subsystem –component diagram

Table 20: Technical Components Subsystem – component specification

4.4.3. TC_Enhancement_Process Subsystem

Component Name Name = TC_Enhancement_Process

Subsystem = USEMP_SS
Purpose (what, not how) This subsystem encapsulates three distinct processes

• orchestrate of content&metadata coming in (TC_C&M) and the credentials of the
OSN_USER (AA_Account)

• orchestrate commands and parameters to processes Value_Estimate and
PrivacyProfiling_Process

• orchestrate the content&metadata results (P&E-metadata) from the processes
Inputs Content and metadata coming in from the Technical_Components subsystem (TC_C&M)
Outputs content&metadata results (P&E-metadata) from the TC_Enhancement_Process

(Subsystem) processing (PRIVACY_DB)
Dependencies AA_Account (Interface)
Interfaces TC_C&M | required

PRIVACY_DB | provided
Ports content&metadata | direction: output

P&E-metadata | direction: input
Contracts TC_C&M | contract: pre-condition | The Technical Components Content and Metadata are

required to be true when component is invoked
PRIVACY_DB | contract: post-condition | The Orchestrated outcome from this subsystem
processes is the PRIVACY_DB information

Diagram TC_Enhancement_Process Subsystem is a component part of the Figure 18. USEMP_SS
Subsystem –component diagram

Table 21: TC_Enhancement_Process Subsystem – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

72
© Copyright USEMP consortium

4.5. Analytic Modules Integration
Analytic Components subsystem component diagram

Figure 19. Technical Components – subsystem component diagram

USEMP – FP7 611596 D7.1 Dissemination Level: PU

73
© Copyright USEMP consortium

For a consolidated list of commands, parameters and output types description see

APPENDIX F. The build-priority of components included in Figure 16. USEMP_SYSTEM
architecture – TOP-LEVEL is documented bellow.

Component
Priority

(1: highest i.e. first prototype …
4: lowest last prototype-optional)

Reason

TC_ETL_Orchestrator 1
TC01_FaceDetection 2 Dependent on the operation of the Orchestrator.

TC02_FaceRecognition 2 Dependent on the operation of the Orchestrator.
TC03_LogoRecognition 2 Dependent on the operation of the Orchestrator.

TC04_MultimediaSimilarity 2 Dependent on the operation of the Orchestrator.
TC05_TextSimilarities 2 Dependent on the operation of the Orchestrator.
TC06_OpinionMining 2 Dependent on the operation of the Orchestrator.

TC07_ContentLocation 2 Dependent on the operation of the Orchestrator.
TC08_PAMediaPredictor 2 Dependent on the operation of the Orchestrator.
TC09_PABehavPredictor 2 Dependent on the operation of the Orchestrator.

TC10_WordCount 2 Dependent on the operation of the Orchestrator.

TC11_Tracking&Analysis 3
Dependent on the operation of the Tools and
Orchestrator.

Table 22: Technical Components – subsystem component priority

USEMP – FP7 611596 D7.1 Dissemination Level: PU

74
© Copyright USEMP consortium

4.5.1. TC_ETL_Orchestrator - Component Specificatio n

Component Name Name = TC_ETL_Orchestrator

Subsystem = Technical_Components
Purpose (what, not how) The Orchestrator is the general manager of this subsystem responsible for scheduling

execution and distribution-aggregation of content&metadata datasets from the technical
components processes.

Inputs The open-source data from websites and databases required for the Technical
components training and possible iterations of the processes (content source (various))
USEMP-account-required (or closed) sources of data collected from the USEMP_TOOLS
(HISTORICAL _DATA_DB)
Post-processing data from the Technical Components processes are collected and are
available on the C&M_Orchestrated port (TC_AggrOut).

Outputs Some Technical Component require an iteration-process with the subset of TC_AggrOut
dataset the dependencies arrows (dotted arrow) make the TC_AggrOut available as an
input of each component (TC_Params)
The relevant subset of the HISTORICAL _DATA_DB (and/or TC_AggrOut) objects are
made available to each Technical_Component (TC_Params)
Each Technical Component requires a command scheduled by the orchestrator with the
appropriate parameters and arguments for processing and store the content&metadata
(TC_CTRL_CMD)
The aggregated post-processed data from Technical Components are made available by
this component (TC_C&M)

Dependencies AA_Account (Interface)
Technical Components (TC01-TC11) (Components)
TC_AggrOut (Interface)

Interfaces Connect source (various) | required
HISTORICAL_DATA_DB | required
TC_AggrOut | required
TC_Command | provided
TC_C&M | provided
TC_Params | provided

Ports content&metadata | direction: output
TC_CTRL_CMD | direction: input
TC_processOutput | direction: bi-directional
C&M_Orchestrated | direction: bi-directional

Contracts Connect source (various) interface | contract: pre-condition | Open source databases
links need to establish and verified before certain Technical Components that require
these information can execute.
HISTORICAL_DATA_DB interface | contract: pre-condition | Databases collected from
the DataBait_BROWSER and DataBait_FB need to be up-to-date and datasets need to
be cross-checked with the identity manager component (OSN_USER)
TC_Params interface | contract post-condition | The content will exist for each Technical
Component that requires them as parameters
TC_Command interface | condition: invariant | The appropriate command needs to be
provided in every Technical Component to optimise the orchestration of data process
TC_processOutput interface | condition: post-condition | This interface implements the
aggregation of the Technical Components results and providing this aggregation as an
output of this Subsystem.

Diagram TC_ETL_Orchestrator is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 23: TC_ETL_Orchestrator – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

75
© Copyright USEMP consortium

4.5.2. TC01_FaceDetection - Component Specification

Component Name Name = TC01_FaceDetection

Subsystem = Technical_Components
Purpose (what, not how) Takes an image as input and outputs a prediction about the presence of one or several

faces in the image
Inputs An image during the detection phase (TC_Params). Need the model at initialisation

(TC_Command).
Outputs Prediction about the presence of faces within the image. Each face is localized by a box

(X, Y, W, H), where (X, Y) is the coordinates of the upper-left corner, W the width and H
the height of the box (TC_AggrOut).

Dependencies TC_ETL_Orchestrator (Component)
Interfaces TC_Params | required

TC_Command | required
TC_AggrOut | provided

Ports TC01_C&Mout | direction: input
TC01_CMD | direction: output
TC01_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided
to the process with parameters. Parameters consists of model parameters
TC_Params | contract: pre-condition | explanation: Input image object.
TC_AggrOut | contract: post-condition | explanation: Output object returned.

Diagram TC01_FaceDetection is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 24: TC01_FaceDetection – component specification

4.5.3. TC02_FaceRecognition - Component Specificati on

Component Name Name = TC02_FaceRecognition

Subsystem = Technical_Components
Purpose (what, not how) Takes a list of detected faces in an image as input and outputs a prediction about the

presence of one or several faces from a predefined list in the image
Inputs An image during the detection phase (TC_Params). Needs the model at initialisation

(TC_Command).
Outputs For each input (detected face) it returns an identifier to the face recognized

(TC_AggrOut). A special identifier “0” is dedicated to indicate that none of the face of the
base has been recognized.

Dependencies TC_ETL_Orchestrator (Component)
TC01_FaceDeteciton

Interfaces TC_Params | required
TC_Command | required
TC_AggrOut | provided

Ports TC02_C&Mout | direction: input
TC02_CMD | direction: output
TC02_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided
to the process with parameters. Parameters consists of model parameters
TC_Params | contract: pre-condition | explanation: Input image object.
TC_AggrOut | contract: post-condition | explanation: Output object returned.

Diagram TC02_FaceRecognition is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 25: TC02_FaceRecognition – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

76
© Copyright USEMP consortium

4.5.4. TC03_LogoRecognition- Component Specificatio n

Component Name Name = TC03_LogoRecognition

Subsystem = Technical_Components
Purpose (what, not how) Tool takes image as input and outputs a prediction about the presence of one or several

logos from a predefined list in the image
Inputs An image during the detection phase (TC_Params). Needs the model(s) at initialisation

(TC_Command).
Outputs Prediction about the presence of logos within the image (TC_AggrOut). Each logo is

localized by a box (X, Y, W, H), where (X, Y) is the coordinates of the upper-left corner, W
the width and H the height of the box.

Dependencies TC_ETL_Orchestrator (Component)
Interfaces TC_Params | required

TC_Command | required
TC_AggrOut | provided

Ports TC03_C&Mout | direction: input
TC03_CMD | direction: output
TC03_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided to
the process with parameters. Parameters consists of model parameters
TC_Params | contract: pre-condition | explanation: Input image object.
TC_AggrOut | contract: post-condition | explanation: Output object returned.

Diagram TC03_LogoRecognition is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 26: TC03_LogoRecognition – component specification

4.5.5. TC04_MultimediaSimilarity - Component Specif ication

Component Name Name = TC04_MultimediaSimilarity

Subsystem = Technical_Components
Purpose (what, not how) Takes multimedia documents as inputs and outputs a prediction about their degree of

similarity (i.e. similarity score).
Inputs Two multimedia documents (TC_Params)
Outputs A degree of similarity expressed by a float (TC_AggrOut). The higher, the more similar the

documents.
Dependencies TC_ETL_Orchestrator (Component)
Interfaces TC_Params | required

TC_Command | required
TC_AggrOut | provided

Ports TC04_C&Mout | direction: input
TC04_CMD | direction: output
TC04_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided to
the process with parameters. Parameters consists of model parameters
TC_Params | contract: pre-condition | explanation: Input image object.
TC_AggrOut | contract: post-condition | explanation: Output object returned.

Diagram TC04_MultimediaSimilarity is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 27: TC04_MultimediaSimilarity – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

77
© Copyright USEMP consortium

4.5.6. TC05_TextSimilarities - Component Specificat ion

Component Name Name = TC05_TextSimilarities

Subsystem = Technical_Components
Purpose (what, not how) Takes two texts as inputs and outputs a prediction about their degree of similarity (i.e.

similarity score).
Inputs Two text documents (TC_Params).
Outputs A degree of similarity given by a float (TC_AggrOut). The higher, the more similar the

documents.
Dependencies TC_ETL_Orchestrator (Component)
Interfaces TC_Params | required

TC_Command | required
TC_AggrOut | provided

Ports TC05_C&Mout | direction: input
TC05_CMD | direction: output
TC05_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided to
the process with parameters. Parameters consists of model parameters
TC_Params | contract: pre-condition | explanation: Input image object.
TC_AggrOut | contract: post-condition | explanation: Output object returned.

Diagram TC05_TextSimilarities is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 28: TC05_TextSimilarities – component specification

4.5.7. TC06_OpinionMining - Component Specification

Component Name Name = TC06_OpinionMining

Subsystem = Technical_Components
Purpose (what, not how) Takes text features as input and outputs predictions (scores) about the opinion expressed in

the input with three possible values: positive, neutral or negative.
Inputs Textual features, obtained through the module TextSimilarities (TC_Params).

Outputs Three float values (TC_AggrOut), each corresponding to the following opinion regarding the
input:
- positive opinion
- neutral opinion
- negative opinion

Dependencies TC_ETL_Orchestrator (Component)
TC_05_TextSimilarities

Interfaces TC_Params | required
TC_Command | required
TC_AggrOut | provided

Ports TC06_C&Mout | direction: input
TC06_CMD | direction: output
TC06_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided to
the process with parameters. Parameters consists of model parameters
TC_Params | contract: pre-condition | explanation: Input image object.
TC_AggrOut | contract: post-condition | explanation: Output object returned.

Diagram TC06_OpinionMining is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 29: TC06_OpinionMining – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

78
© Copyright USEMP consortium

4.5.8. TC07_ContentLocation - Component Specificati on

Component Name Name = TC07_ContentLocation

Subsystem = Technical_Components
Purpose (what, not how) takes a text features, image features or a combination of the two as inputs and outputs

predictions (scores) about the most probable geographic location of that document
Inputs Takes textual and visual features and models (TC_Params). A couple (feature, model) may

be unused but at least one of them must be provided.
Outputs Location, expressed as a pair of latitude-longitude coordinates (TC_AggrOut).
Dependencies TC_ETL_Orchestrator (Component)
Interfaces TC_Params | required

TC_Command | required
TC_AggrOut | provided

Ports TC07_C&Mout | direction: input
TC07_CMD | direction: output
TC07_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided to
the process with parameters. Parameters consists of model parameters
TC_Params | contract: pre-condition | explanation: Input image object.
TC_AggrOut | contract: post-condition | explanation: Output object returned

Diagram TC07_ContentLocation is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 30: TC07_ContentLocation – component specification

4.5.9. TC08_PAMediaPredictor - Component Specificat ion

Component Name Name = TC08_PAMediaPredictor

Subsystem = Technical Components
Purpose (what, not how) The personal attribute multimedia prediction function takes raw images or image features

input via passing a buffered-image object or an image-features object respectively.
Additional parameters pertain to the classification configuration. The function output is an
array-list of concepts/attributes with the associated prediction scores.

Inputs Prediction model parameters (TC_Command)
Raw images input (TC_Params) OR extracted features (TC_AggrOut)

Outputs Technical Component content and metadata in this case the arraylist of concepts/attributes
with the associated prediction scores (TC_AggrOut)

Dependencies TC_ETL_Orchestrator (Component)
(to be defined) TCXX_FeatureExtractor

Interfaces TC_Params | required
TC_Command | required
TC_AggrOut | provided

Ports TC08_C&Mout | direction: input
TC08_CMD | direction: output
TC08_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided to
the process with parameters. Parameters consists of classification model parameters (see
2.2.4.8 for command details)
TC_Params | contract: pre-condition | explanation: Input image object.
TC_Params | contract: pre-condition | explanation: Input image features object.
TC_AggrOut | contract: post-condition | explanation: Output object returned.

Diagram TC08_PAMediaPredictor is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 31: TC08_PAMediaPredictor – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

79
© Copyright USEMP consortium

4.5.10. TC09_PABehavPredictor - Component Specifica tion

Component Name Name = TC09_PABehavPredictor

Subsystem = Technical Components
Purpose (what, not how) The personal attribute behaviour prediction function takes raw digital trails input via passing

an arraylist object. Digital trail may represent Facebook likes and visited webpages.
Additional parameters pertain to the classification configuration. The function output is an
arraylist of concepts/attributes with the associated prediction scores.

Inputs Prediction model parameters (TC_Command)
Raw digital trail input, i.e. Facebook likes and visited webpages (TC_Params)

Outputs Technical Component content and metadata in this case the arraylist of concepts/attributes
with the associated prediction scores (TC_AggrOut)

Dependencies TC_ETL_Orchestrator (Component)
Interfaces TC_Params | required

TC_Command | required
TC_AggrOut | provided

Ports TC09_C&Mout | direction: input
TC09_CMD | direction: output
TC09_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided to
the process with parameters. Parameters consists of classification model parameters (see
3.6.9 for command details)
TC_Params | contract: pre-condition | explanation: Input digital trails object.
TC_AggrOut | contract: post-condition | explanation: Output object returned.

Diagram TC09_PABehavPredictor is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 32: TC09_PABehavPredictor – component specification

4.5.11. TC10_WordCount - Component Specification

Component Name Name = TC10_WordCount

Subsystem = Technical_Components
Purpose (what, not how) The word count function takes raw text input either from a command line file uri, or via

passing text directly as a formatted string. Additional parameters are an optional word
blacklist, or enabling default functional word reduction, as well as a Boolean parameter to
reduce word plurality to singular form and count all such words as identical. The function
output is an arraylist of words with the associated word frequency. Statistics about the input
text makeup can be queried from the object but are not returned by default

Inputs TC_ETL_Orchestrator provides the command-line with all the parameters (TC_Command)
Raw text input (TC_Params)

Outputs Technical Component content and metadata in this case the arraylist of words with the
associated word frequency (TC_AggrOut)

Dependencies TC_ETL_Orchestrator (Component)
Interfaces TC_Params | required

TC_Command | required
TC_AggrOut | provided

Ports TC10_C&Mout | direction: input
TC10_CMD | direction: output
TC10_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: a command needs to be provided to
the process with parameters. Parameters consists of: input parameters location pointer,
mode of operation of the instance and output parameters location pointer (see 0 for
command details)
TC10_Params | contract: pre-condition | explanation: Input parameters location (where the
TC_Command “input parameters location pointer” points to).
TC_AggrOut | contract: post-condition | explanation: Location where the output content and
metadata of the process are accumulated.

Diagram TC10_WordCount is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 33: TC10_WordCount – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

80
© Copyright USEMP consortium

4.5.12. TC11_Tracking&Analysis - Component Specific ation

Component Name Name = TC011_Tracking&Analytics

Subsystem = USEMP Architecture.
Purpose (what, not how) Tracking and Analytics Tool purpose is to obtain advanced USEMP users-centric profile

attribute based on the analysis, synthesis and aggregation of their personal and
behavioural data collected in USEMP_SS Historical DB.

Inputs User ID (TC_Command)
Time_period_start, Time_period_end, (TC_Command)
User profile attribute to be calculated (TC_Command)
User profile raw event data (TC_Params)

Outputs Technical Component content and metadata in this case the arraylist of concepts/attributes
with user profile attributes (TC_AggrOut)

Dependencies TC_ETL_Orchestrator (Component)
Interfaces TC_Params | required

TC_Command | required
TC_AggrOut | provided

Ports TC11_C&Mout | direction: input
TC11_CMD | direction: output
TC11_Params | direction: output

Contracts TC_Command | contract: pre-condition | explanation: User profile parameter details
TC_Params | contract: pre-condition | explanation: Input raw data.
TC_AggrOut | contract: post-condition | explanation: Output object (list) returned.

Diagram TC11_Tracking&Analysis is a component part of the Figure 19. Technical Components –
subsystem component diagram

Table 34: TC11_Tracking&Analysis – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

81
© Copyright USEMP consortium

4.6. TC_Enhancement_Process Integration
TC_Enhancement_Process subsystem component diagram

Figure 20. TC_Enhancement_Process – subsystem component diagram

The build-priority of components included in Figure 20. TC_Enhancement_Process –

subsystem component diagram is documented bellow.

Component
Priority

(1: highest i.e. first prototype …
4: lowest last prototype-optional)

Reason

ETL_Orchestrator 2 Requires research and input from WP5-6,
preliminary implementations can include straight
through of information from technical components
subsystem.

PrivacyProfiling_Process 2

Value Estimate 2

Table 35: TC_Enhancement_Process – subsystem component priority

USEMP – FP7 611596 D7.1 Dissemination Level: PU

82
© Copyright USEMP consortium

4.6.1. ETL_Orchestrator - Component Specification

Component Name Name = ETL_Orchestrator

Subsystem = TC_Enhancement_Process
Purpose (what, not how) The role of the ETL_Orchestrator in this subsystem is to provide throughput of data from the

technical components output (TC_C&M) with the account crosschecked using
(AA_Account) distribute through the Conduct_C&M interface the dataset to the
Value_Estimate process and a copy to the PrivacyProfiling_Process and Aggregate the
results. The Aggregated result from the processes are combined and made available to the
PRIVACY_DB

Inputs Technical Components Content and Metadata results from the Technical_Components
subsystem (TC_C&M)
The Aggregated results from Value_Estimate process and PrivacyProfiling_Process are
made available to the PRIVACY_DB interface (MVE_PP_metadata)

Outputs TC_C&M is are copied into the Value_Estimate process and PrivacyProfiling_Process
(Orchestrated_C&M)
Aggregate the results from Value_Estimate process and PrivacyProfiling_Process
(PRIVACY_DB)

Dependencies AA_Account interface from Identity Manager component (component)
Interfaces Orchestrated_C&M | provided

MVE_PP_metadata | required
TC_C&M | required
PRIVACY_DB | provided

Ports content&metadata |output
Conduct_C&M | bi-directional
PRIVACY_DB | input

Contracts AA_Account | contract: precondition | crosschecking the credentials of the profile
Conductor_C&M | contract: invariant | Provide the content and metadata and the wait for the
response from the processes

Diagram ETL_Orchestrator is a component part of the Figure 20. TC_Enhancement_Process –
subsystem component diagram

Table 36: ETL_Orchestrator – component specification

4.6.2. Value_Estimate - Component Specification

Component Name Name = Value_Estimate

Subsystem = TC_Enhancement_Process
Purpose (what, not how) Aims at estimating the:

• Economic value insights of their personal information disseminated online;
• A dynamically obtained value of a user’s created data that will further depict the

user to a particular brand or product (i.e. customer value) b) social media
influence and ‘reach’ with respect to brands/product (brand ambassadors)
corresponding privacy compromises made;

For more detailed description of this component functionality please read D6.1 of WP6
Inputs See output from the ETL_Orchestrator (Orchestrated_C&M)
Outputs See input from the ETL_Orchestrator (MVE_PP_metadata)
Dependencies
Interfaces Orchestrated_C&M | required

MVE_PP_metadata | provided
Ports TC_MVEcontent | direction : output

MVE_metadata | direction : input
Contracts
Diagram Value_Estimate is a component part of the Figure 20. TC_Enhancement_Process –

subsystem component diagram

Table 37: Value_Estimate – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

83
© Copyright USEMP consortium

4.6.3. PrivacyProfiling_Process - Component Specifi cation

Component Name Name = PrivacyProfiling_Process

Subsystem = TC_Enhancement_Process
Purpose (what, not how) Aims at deriving estimates with respect to user OSN profile attributes that are considered

“private”. For more detailed description of this component functionality please read D6.1 of
WP6

Inputs See output from the ETL_Orchestrator (Orchestrated_C&M)
Outputs See input from the ETL_Orchestrator (MVE_PP_metadata)
Dependencies
Interfaces Orchestrated_C&M | required

MVE_PP_metadata | provided
Ports TC_PPcontent | direction : output

PP_metadata | direction : input
Contracts
Diagram PrivacyProfiling_Process is a component part of the Figure 20. TC_Enhancement_Process

– subsystem component diagram

Table 38: PrivacyProfiling_Process – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

84
© Copyright USEMP consortium

APPENDIX A. Subsystem Specification template

Subsystem <NAME>
SUBSYSTEM component diagram

Component
Priority

(1: highest i.e. first prototype …
4: lowest last prototype-optional)

Reason

Component <name> 3
Component <name> 2
Component <name> 1
Component <name> 1

 1
 1
 1

Table 39: <name> Subsystem – component priority

USEMP – FP7 611596 D7.1 Dissemination Level: PU

85
© Copyright USEMP consortium

APPENDIX B. Subsystem component specification template

name Component Name = name
Subsystem = name

Purpose (what, not how) freeform description
Inputs * freeform description (interface name)
Outputs * freeform description (interface name)
Dependencies * name (actor or component or subsystem or external)
Interfaces * name | provided or required

{tip} provided interface: one supplied by this component
{tip} required interface: one supplied by another component (i.e. dependency

Ports (tip) interaction points
* name | direction: input or output or bi-directional
{tip} bi-directional = a port has both required & provided interfaces;
{tip} output = a port has only required interfaces;
{tip} input = a port has only provided interfaces;

Contracts (tip) explanation of key constraints & behaviours, per interface or applied to whole
component
* interface or whole | contract: pre-condition or post-condition or invariant | explanation
{tip} pre-condition: that which must be true when interface or component is invoked
{tip} post-condition: outcome when pre-conditions are true
{tip} invariant: that which must always be true

Diagram (tip) cross-reference uml2 component diagram of link to diagram

Table 40: <name> component – component specification

USEMP – FP7 611596 D7.1 Dissemination Level: PU

86
© Copyright USEMP consortium

APPENDIX C. Concept Glossary

Definitions:

Digital trail
Is the trail of digital-information provided by the OSN_USER interactions

and captured by the USEMP TOOLS

HADOOP
Apache Hadoop is an open-source software framework for storage and

large-scale processing of data-sets on clusters of commodity hardware

HaP#.# Hadoop Application Processing step/s

USEMP_API

This is a transparent (to the OSN_USER) ‘glue’ processes otherwise

recognised as Application programming interface (API) between provided

and acquired access to the back-end USEMP processes and processed

information.

DataBait-AA

Part of the USEMP-TOOLS is where the OSN_USER is asked to

Authorise-Authenticate login to the USEMP-TOOLS in order to interact

with the WEB-APP or alter the privacy preferences or to activate the

installed USEMP-TOOLS

DataBait-BROWSER
Is part of the USEMP-TOOLS plugin that gathers the digital trail specific

to the browser utilised by the data-subject

DataBait-FB
Is the USEMP-TOOLS plugin that gathers the digital trail specific to

FACEBOOK OSN

DataBait-GUI
Is part of the client side plugin visualising USEMP_SS findings located in

PRIVACY_DB

VALUE ESTIMATE

Is a process where emerged ‘value/importance’ (when possible) is

assigned to content and/or to metadata processed by the TECHNICAL

COMPONENTS. The weight-values are stored in the PRIVACY_DB in

order to influence alert/warning level

OSN/s Online Social Network/s

OSN_USER
The online social network data-subject is the ‘actor’ logging-in to the

OSN, being inquisitive of the digital-trail, employs the USEMP-TOOLS

PRIVACY_DB
Is a database that USEMP-TOOLS builds up from processing the

OSN_USER digital-trail

TECHNICAL
COMPONENTS

Are the collection of functional blocks utilised to analyse aspects of the

OSN_USER digital-trail (depending on the workflow) in conjunction with

open source data provided by Wikipedia data, logo DB, location DB etc.

USEMP
Project full title: "User Empowerment for Enhanced Online Presence

Management"

USEMP-TOOLS

(USEMP as above) ‘Tools’ word is used to signify the umbrella of

functional blocks installed to enable the USEMP concepts. In the

Architecture signifies the set of tools/GUI tools on the client side of the

USEMP_SYSTEM

USEMP-SS
This architecture subsystem component characterises the group of

processes that are located in the backend or Server Side (SS) of

USEMP_SYSTEM

USEMP – FP7 611596 D7.1 Dissemination Level: PU

87
© Copyright USEMP consortium

APPENDIX D. Data Structure for USEMP-TOOL and USEM P_SS
communication

A. User Real-time Personal and Behavioural Browsers Data

Name Description Type Metadata Frequency

A1
Site

Unique

Visits

web sites (URL) visited by the

user

URL

(name)
Time Stamp

On Page-

view

A2
Site

Visits

of times a user visited a web

site (URL)
of visits Time Stamp

On Page-

view

A3

Time

Spent

Per

Site

Time a user spent during one

visit. (time opened the URL at his

browser)

Time
Time Stamp End,

Time Stamp Start

On

Browser

Tab Close

A4 Images

Images

Uploaded/Accessed/Downloaded

by the user.

Image

Object

(e.g., tiff,

png, gif,

etc.)

Time Stamp, Type,

URL of the page

containing the

image, the URL of

the image.

On Action

A5 Videos

Videos

Uploaded/Accessed/Downloaded

by the user.

URL (of the

video)

Time Stamp, Type,

URL of the page

containing the

image

On Action

A6 Actions
Click on specific element at the

web site.
URL

Time Stamp, Any

Metadata available

(to determine the

type)

On Action

A7 Text
Text Uploaded/Accessed at the

web site.
Text

Time Stamp, Type

(e.g., email, etc.)
On Action

A8 News
Page views of specific news

elements.
URL

Time Stamp, Any

Metadata available

(determining that

the text element is

news)

On Page-

view

Table 41: User Real-time Personal and Behavioural Browsers Data

USEMP – FP7 611596 D7.1 Dissemination Level: PU

88
© Copyright USEMP consortium

B. Internet Services that Track user’s Data

Name Description Type Metadata Frequency

B1

of

Trackers

for Site

URL

The number of tracking

services when a DataBait

user visits URL

of Trackers
Timestamp, Site

URL,

On Page-

view

B2
Tracker

The ID of the tracking

services when a DataBait

user visits a URL

URL

Timestamp, Site

URL, Tracker ID

(tracker URL),

Tracker Type (e.g.,

Analytics,

Advertising,

Beacons, Social)

On Page-

view

Example: (021233132132131, https://www.linkedin.com/home,
DoubleClick, https://ad-emea.doubleclick.net/adi/linkedin.dart, Advertising).

B3
Tracker

email

A Tracker of users email

(e.g., google-mail)
URL

Timestamp, Site

URL, Tracker ID

(tracker URL),

Tracker Type (e.g.,

Analytics,

Advertising,

Beacons)

On Page-

view

Table 42: Internet Services that Track user’s Data

USEMP – FP7 611596 D7.1 Dissemination Level: PU

89
© Copyright USEMP consortium

C. User Historical and Real-time OSN Data
(FB Graph API Terminology is used)

Name Description Type Metadata Frequency

C1 Posts
Feed 49

An individual entry in a

profile's feed. The profile

could be a user, page,

app, or group.

URL/JSON Multiple

see. 49

Past and New.

(Periodic search

e.g., weekly)

C2 Likes and

Unlikes 50

The Facebook Pages that

this person has 'liked'.

URL/JSON Multiple

see 50.

Past and New.

(Periodic search

e.g., weekly)

C3 Photos

Or

Photos

Uploaded
51

Represents an individual

photo on Facebook.

URL/JSON Multiple

see 51

Tagged

Images

Past and New.

(Periodic search

e.g., weekly)

C4 Friends-list

or

Friends 52

A person's 'friend lists' -

these are groupings of

friends such as

"Acquaintances" or

"Close Friends", or any

others that may have

been created.

URL/JSON Multiple

see 52.

Past and New.

(Periodic search

e.g. weekly)

C5 Friends'

activities

upon

user’s

OSN

objects

Represents an action of a

friend in one of a user’s

objects on Facebook.

URL/JSON Multiple New (Periodic

search e.g.,

weekly)

C6 Ads shown

to the user

Not Feasible - - -

C7 News 53

(/home)

The person's news feed. URL/JSON Multiple

see 53.

Past and New.

(Periodic search

e.g., weekly)

C8 User

Profile 50 *

and

Interests

A user represents a

person on Facebook.

The /{user-id} node

returns a single user.

URL/JSON Multiple

see 54.

Past and New.

(Periodic search

e.g., weekly)

Table 43: User Historical and Real-time OSN Data (with FB Graph API Terminology)

49 https://developers.facebook.com/docs/graph-api/reference/v2.0/user/feed/
50 https://developers.facebook.com/docs/graph-api/reference/v2.0/user/likes
51 https://developers.facebook.com/docs/graph-api/reference/v2.0/photo/
52 https://developers.facebook.com/docs/graph-api/reference/v2.0/user/friendlists
53 https://developers.facebook.com/docs/graph-api/reference/v2.0/user/home/
54 https://developers.facebook.com/docs/graph-api/reference/v2.0/user

USEMP – FP7 611596 D7.1 Dissemination Level: PU

90
© Copyright USEMP consortium

D. User Personal Data for Training USEMP Tool Algor ithms
(Note if a data type already exist then just repeat it)

Name Description Type Metadata Frequency

D1 Likes

(metric: C2)

Facebook pages that

the user has liked.

List of URLs (or

Facebook page

ids)

Timestamp of

like (may be

useful)

Once in the

beginning to get

a first bulk of

personal data

and then

periodically to

give updates to

the user.

D2 Shared

Pages

(metric: C1)

Pages/Links that the

user has shared.

List of URLs. Timestamp of

share

-Weekly

D3 Site Unique

Visits

(metric: A1)

URLs that the user

visits in their browser.

List of URLs Timestamp

and duration

of visit

Real Time

D4 Trackers

(metric: B2)

Tracker URLs/ids

associated with the

visited websites.

List of URLs/ids Same as #A3 Real Time

D5 FB Images

(metric: C3)

Images that the user

has uploaded and

where the user is

tagged.

List of URLs (or

byte arrays)

Timestamp,

accompanying

metadata

Similar to #A1.

D6 User

network

(metric: C4)

List of friends +

connections between

them (probably useful

for value estimation)

List of

Facebook

profile ids, list

of connections

between them

Any available

profile info for

friends.

Once in the

beginning and

then on a regular

(but not very

frequent basis)

D7 User friends

reactions

(metric: C5)

The reactions of friends

in a user’s posts.

List of likes,

shares,

comments on

user’s posts,

comments.

Timestamp,

comment text

Similar to #A1.

Table 44: User Personal Data for Training USEMP Tool Algorithms

USEMP – FP7 611596 D7.1 Dissemination Level: PU

91
© Copyright USEMP consortium

APPENDIX E. Data-access level structure

Figure 21. Data-subject digital trail free-mind

USEMP – FP7 611596 D7.1 Dissemination Level: PU

92
© Copyright USEMP consortium

APPENDIX F. TC Requirements table

TC_ID
(page)

Technical Component (TC)
name + mode

TC_Command
1…n x [Class of options]

TC_PARAMS
1…n x [TYPE], …

TC_AGGROUT
1…n x [TYPE], …

ADDITIONAL

TC01
(p54)

Face detection
LIB1 mode

1..n x [PredictionParams] 1x [Image] 1..n x [Image, position,
size]

Output includes part of the input image
Class name of output is <FaceDetection>

 Face detection
INIT mode

1..n x [PredictionParams]
1 x [PredictionModel]

 Prior to the execution of the method, the face detector
must be initialized with a given model

 Face detection
LIB2 mode

 1x [Image] 1..n x [Image, position,
size]

In this mode the INIT mode is already performed.
Class name of output is <FaceDetection>

TC02
(p54)

Face Recognition
LIB1 mode

1..n x [RecognitionParams] 1x [Image] 1x [link2DB(faces)] 1..n x String Access to DB of faces to compare
Class name of output is < FaceRecognizer >

 Face Recognition
INIT mode

1..n x [RecognitionParams]
1 x [Recognition Model]

1x [Image] 1x [link2DB(faces)] Prior to the execution of the method, the face
Recognition must be initialized with a given model

 Face Recognition
LIB2 mode

 1x [Image] 1x [link2DB(faces)] 1..n x String Class name of output is < FaceRecognizer

TC03
(p54)

Logo Recognition
LIB1 mode

1..n x [PredictionParams]

1x [Image] [1x [link2DB(logos)] 1..n x String Access to DB of logo(s) to compare in order to return the
name of the logo associated
Class name of output is < LogoRecognizer >

 Logo Recognition
INIT mode

1..n x [PredictionParams]
1 x [LogoResource model]

 Initialisation mode

 Logo Recognition
LIB2 mode

 1x [Image] [1x [link2DB(logos)] 1..n x String Class name of output is < LogoRecognizer >

TC04
(p55)

Multi-Modal Similarity
INIT mode

 TC05 needs to be performed first
TC07 needs to be performed first
MultimediaFeatures mmFeats = Merge (TC05, TC07)

 Multi-Modal Similarity
LIB1 mode

1..n x [MultimediaFeatures],
1 x [PredictionParams]

1 x [MultimediaFeatures]

[1x String] [1x CompareString] 1 x String LIB1 mode: 2 strings (raw text) are evaluated regarding
the concept
Class name of output is < MultimediaSimilarity >

 Multi-Modal Similarity
LIB2 mode

1..n x [MultimediaFeatures],
1 x [PredictionParams]

1 x [MultimediaFeatures]

[1x String] [1x Image] [1x
PublicURL]

1 x String Mode2: String + Image are evaluated regarding the
concept in a URL
Class name of output is < MultimediaSimilarity >

USEMP – FP7 611596 D7.1 Dissemination Level: PU

93
© Copyright USEMP consortium

TC05
(p55)

Text Similarity
LIB1 mode

1..n x [TextFeatures],
1..n x [TextModel]

[1x String] [1..n x
Link2DB(PublicTEXT)

1..n x String Domain(s) the text refers to or Domains of interest of the
user. Class name of output is < TextSimilarity>

 Text Similarity
INIT mode

1..n [FeatureParams] [1x String] [1..n x
Link2DB(PublicTEXT)

1..n x String Initialisation mode

TC06
(p55)

Opinion Mining
LIB1 mode

1..n x [TextFeatures] ,
1..n [FeatureParams]

1x [String] 1..n x [CompareString] 1..n x [String, Enum] LIB1 (Enum: Positive or neutral or negative
characterization). Class name of output is
<OpinionMining>

 Opinion Mining
LIB2 mode

1..n x [TextFeatures],
1..n [FeatureParams]

1x [String] 1x [Image] 1..n x
[PublicURL]

1..n x [String, Enum] LIB2 (Enum: Positive or neutral or negative
characterization). Class name of output is
<OpinionMining>

 Opinion Mining
INIT mode

1..n [FeatureParams] 1x [String] 1..n x [String, Enum] Initialisation mode

TC07
(p56)

Content Location (Mode 1) [1x Image] [1 x link2DB(Public
locations)

1..n x LocStruct Mode 1: Input only [image] is provided with the DB of
locations.
LocStruct is [1x coordinate pairs], [1x String
corresponding place names] [1x int%] probability for the
location prediction to be accurate

 Content Location (Mode 2) [1x Text] [1 x link2DB(Public
locations)

1..n x LocStruct Mode 2: Input only [Text] is provided with the DB of
locations.
LocStruct is [1x coordinate pairs], [1x String
corresponding place names] [1x int%] probability for the
location prediction to be accurate

 Content Location (Mode 3) [1x Image] [1x Text] [1 x
link2DB(Public locations)

1..n x LocStruct Mode 1: Input only [Image+Text] is provided with the DB
of locations.
LocStruct is [1x coordinate pairs], [1x String
corresponding place names] [1x int%] probability for the
location prediction to be accurate

TC08
(p56)

Personal Attribute
Multimedia Predictor

 [1x Image] [1x String] [1x Struct(P.A.M.Pred)] Struct is a pre-specified number of attributes for
example: [(S, 0.77, TRUE), (D, 0.32, FALSE), (XS, 0.01,
FALSE)] with S: Smoking, D: Drinking, XS: Extreme
Sports

TC09
(p56)

Personal Attribute
Behavioral Predictor

1..n x [PredictionParams],
1 x [BehaviouralModel]

1 x [<UserActivity>] 1 x
[<AttributePrediction>]

Parameter “UserActivity” is an array of elements of User
Activity could be Likes, Visits to websites, etc. and in the
simplest case could be represented as URLs. Example
of user activity is a pre-specified number of attributes for
example: [(H, 0.04, FALSE), (D, 0.82, TRUE), (L, 0.72,
TRUE)] with H: Homosexual, D: Diabetic and L: Liberal

USEMP – FP7 611596 D7.1 Dissemination Level: PU

94
© Copyright USEMP consortium

TC10
(p57)

Word Count (Mode 1) bool WordReduction 1x [String] 1..n x [String] Output class is WordStatistics

 Word Count (Mode 2) bool WordReduction, bool
PluralityReduction

1x [String] 1..n x
[Struct(TextStats)]

Output class is WordStatistics

 Word Count (Mode 3) bool WordReduction, bool
PluralityReduction, List

BlackList

1x [String] 1..n x
[Struct(TextStats)]

Output class is WordStatistics

TC11
(p58)

Tracking and Analytics
Function

user profile attributes user id, time_period_start,
time_period_end

1..n x
[Struct(Profiling_Digital

Trail)]

Output class is UserProfileAggregationsAttributes

